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DEDEKIND GROUPS

DEWAYNE S. NYMANN

A Dedekind group is a group in which every subgroup
is normal. The author gives two characterizations of such
groups, one in terms of sequences of subgroups and the other
in terms of factors in the group.

In a 1940 paper by R. Baer [1], two characterizations of the class
of Dedekind groups are given. However, Lemma 5.2 of that paper is
in error. The results which follow Lemma 5.2 depend on the validity
of that Lemma. Hence these results, which constitute Baer’s charac-
terizations of Dedekind groups, are also in error. A portion of this
paper is devoted to new characterizations of Dedekind groups which
are similar to those attempted by Baer. In §7 there are some further
related results.

2. Notation, As usual o(G) and Z(G) will denote the order of
G and the center of G, respectively. If S is a subset of a group G,
then <S> is defined to be the subgroup generated by S. G’ will denote
the commutator subgroup of G. If H is a subgroup of G, then Core
(H) is the maximum subgroup of H which is normal in G.

3. Definitions. Let Gi(p, n), where p is a prime and »n is a
nonnegative integer, be defined as the group generated by the two
elements a and b, subject to the following relations:

(1) b and ¢ = b~'a"'ba are both of order p,

(2) ac=ca, be =cb, a* = c".

It is noted that G.(p,n) is isomorphic to G,(p,n’) if neither % nor
n' is 0. Also, for p =2, Gi(p, n) is the dihedral group of order 8,
and for p > 2, Gy(p, 0) and G,(p, 1) are the two non-Abelian groups of
order p*[2, pp. 51-52].

Let G.(p), for £k > 1 and » a prime, denote the group which is
generated by the two elements o and b, subject to the following
relations:

k+
a?* =e, b* = e, ba = """ .

\ Then o(G,(p)) = p*** and is the unique group of that order with
cyclic subgroup of index p, and a commutator subgroup of order p
[2, p. 187].

A group G is said to satisfy condition:
(N, if ScT< G, implies S <] T, whenever the complete lattice of
subgroups properly between S and T consists only of a chain of at
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most k groups.

(N) if G satisfies condition (N,) for all & = 0.

(N*) if every subgroup of G is normal in G.

(F,) if ST <G implies T/S is not isomorphic to G(p,n) for all
primes p and all integers = = 0, or to G,(p) for all j <k and for all
primes p.

(F) if G satisfies condition (F}) for all £ > 0.

4. Counterexamples. In the paper of R. Baer [1] it is stated
that for groups G where G/Z(G) is Abelian, the three conditions (X)),
(N*), and (F)) are equivalent. The following is a counterexample to
this statement:

Consider the group G = G, (p) for any k£ > 1. Then o(G) = p**=.
Since a~'ba = av*b, it follows that <b> <1 G. Therefore, G does not
satisfy condition (N*). Since

ba”b_l = (bab"‘l)p — (a/“rpk)p = q? ,

it follows that a® is in Z(G) and o(Z(G)) = p*. But G is non-Abelian
and hence o(Z(G)) = p*. Therefore, Z(G) =<a*> and o(G/Z(G)) = p*..
Thus G/Z(G) is Abelian. And we have the commutator subgroup
G € Z(G) and G = {ar*),

Now suppose T < G, where o(T) = p*** " 0<n<k, and T is
non-Abelian. Then

E+T S G <ZG)=<a").

Since o(G') = p, T' =<a**>. az"¢ T since, otherwise, o(Z(T)) = p*—"*
and, hence Z(T) = T, a contradiction. However, [G:T] = p" and,
therefore, a?” ¢ T, a contradiction. Hence 7' is Abelian. Thus every
proper subgroup of G is Abelian. To show that G satisfies condition
(F,) it is sufficient to consider only the case where T = G, o(S) = p*,
and S<]T. In this case SN Z(G) = E. Therefore, S contains a
subgroup of order p which is contained in Z(G). But Z(G) is cyclic
and G’ is the only subgroup of Z(G) or order p. Hence G’ < S. Then
T/S is Abelian and, therefore, satisfies condition (F}).

Thus, for every natural number % > 1 and every prime number
p, Gi(p) is a counterexample to Lemma 5.2 in [1].

5. Preliminary lemmas.

LEMMA 1. The group G.(p) has an elementary Abelian subgroup
of order p?, and no such subgroup of larger order.

Proof. The subgroup H = <{a’*,b)> is elementary Abelian since
a? ¢ Z(G(p)). Also, o(H) = p*. Suppose L is an elementary Abelian
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subgroup of Gi(p), then [L:L N<a)] < [G:<a)] = p. Since L N<a)
is elementary Abelian and <{a) is cyclic, o(L N<a>) < p and o(L) < p.

LEMMA 2. Gi(p, n) does not satisfy condition (N,) and G,(p) does
not satisfy condition (N,) for k> 1,

Proof. In G,(p,n) let B=<b>. Then B < G,(p,n) and <b, c)> is
the only group of order »* which contains B. Hence G,(p,n) does not
satisfy condition (V).

In G(p) let B=<b)y. Since a'ba = ap®b, it follows that BG, <1 (p).
It remains to show that there exist at most &k subgroups between B
and G.(p). Suppose BC HC G, (p) and BC K C G,(p) where H #= K
and o(H) = o(K) = p***. Then H <]G.(p), K <] G(p) and G,(p) = HK.
Also, B<] H, B<] K since every proper subgroup of G,(p) is Abelian.
Hence B <] G.(p), a contradiction. Therefore {a?, by is the only sub-
group of order p*** which contains B. But there are only £ — 1
proper subgroups of the Abelian group <a?, b> which contain B properly.
Hence there are exactly k& subgroups between B and G,(p). Therefore,
G(p) does not satisfy condition (V).

COROLLARY 3. Gy (p,n) does not satisfy (N;) for j > 1, and G.(p)
does mot satisfy (N;) for j > k.

Proof. In the proof of Lemma 2 it was shown that there are k
subgroups between <b> and G.(p) and <b> ¢ G.(p). But k <j and,
therefore, G,(p) does not satisfy condition (N;).

There is only one subgroup between <b)> and G,(p, n), hence G,(p, n)
does not satisfy condition (;) for j > 1.

COROLLARY 4. G,(p,n) satisfies condition (N,) and G,(p) satisfies
condition (N;) for J <k.

Proof. Suppose SCT S Gi(p, n). Since G.(p,n) is a p-group, it
follows that N,(S) = T since [T:S] = p. Hence S<]T and G.(p,n)
satisfies (NV;).

Now suppose SC T < G,(p) and that the complete lattice of sub-
groups between S and T consists of a chain of at most j subgroups.
We may assume S = E, since F <|T for all subgroups 7. Further,
we may assume that T = G,(p), for if T < G,(p), then T is Abelian
and S<]T.

Suppose Sc T = G4(p). Then [T:S] < p*. Therefore, a*"cS.
Thus G(pyY = S and S <] Gu(p) = T.

LEMMA 5. If the group G satisfies condition (N.), then all



156 DEWAYNE S. NYMANN
subgroups and factor groups of G satisfy condition (N,).
Proof. This follows immediately from the definitions.

LemMMA 6. If G satisfies condition (N,) thenm G satisfies con-
dition (F).

Proof. Let S<{T< G. By Lemma 5, T/S satisfies condition (NV,).
But G,(p, n) does not satisfy condition (N,) and G.(p) does not satisfy
condition (N,), by Lemma 2. Therefore, T/S cannot be isomorphic to
G.(p, n), or isomorphic to G.(p) for £ > 1. Hence G satisfies condition
().

~ 6. Corrected theorem. Using the new definitions which are
given in §2, we obtain the following revised form of Lemma 5.2 in [1].

THEOREM 7. If the group G is such that G/Z(G) is Abelian,
then the three conditions (N), (N*) and (F') are equivalent.

Proof. If G satisfies condition (N*), then G satisfies condition
(N,) for all k= 0, and therefore, G satisfies condition (N). If G
satisfies condition (N), then G satisfies condition (N,) for all & = 0.
By Lemma 6, G satisfies condition (F}) for all £ = 0. Hence G
satisfies condition (F'). It remains to show that condition (F') implies
condition (N*).

We will assume that G does not satisfy condition (N*), but G/Z(G)
is Abelian. Then there exists u € G such that {u) ¢ G, for otherwise
every subgroup would be normal in G. Hence there exists an element
ve G such that

(%) c:[u,v]e<u>,;eG’gZ(G).
Now if
(%%) H<{G and c¢lu,H),

then we assert that G/H has all the properties which G possesses.
Since G is nilpotent of class 2, then G/H is nilpotent of class at most
2. [uH,vH] = cH¢<{uH) since ¢¢<{u, H) and cHe (G/H)' < Z(G/H).
Hence G/H does not satisfy condition (N*). Thus to show that G does
not satisfy (F') it is sufficient to show that G/H does not satisfy (F').

Assume H = Core ({u)). Then H satisfies (xx) and without loss of
generality it can be assumed that Core ((u») = E. Hence {up>N Z(G) = E.

If o(c) is infinite, let p be any prime and if o(c) is finite, let p
be a prime such that p|o(c). Then <{¢*> <<¢>. Since <up)NZ(G) = E
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and ¢ e Z(G), the group <{c¢) x {u) exists. Therefore, ¢ ¢ {u,c?>. Thus
(**) holds with H = {¢*». Thus it can be assumed that ¢?=e. Also,
it can be assumed that G = {u,v)>. Since G is nilpotent of class 2,

[u, v?] = [u?,v] = [u,v]P =c* =e.

Then u?, v* e Z(G). Since Core ({u)) = E, u* = e, Every xzeG can be
written as u*v’c? because G is nilpotent of class 2. Since u?, v?, ¢ € Z(G)
and G/Z(G) is Abelian of type (p, p), then x e Z(G) if and only if p|a
and p|b. Therefore, Z(G) = <u?,v?,¢) =<v?, ¢y, If c¢<w?), then
G/<{v*> is non-Abelian of order p°. This group has at least two sub-
groups of order p and hence is not the quaternion group. Thus
G/{v*> = G(p, n) for some n. If ce<dw?), then <{v?) is finite and G
is a finite nilpotent group. Let L be a p-complement in {»*>. Then
c¢ L since L is a p-complement. Then G/L is a non-Abelian p-group.
The subgroup <vL) is cyclic of index p» in G/L. Then G/L is
isomorphic to some G.(p) or G.p,n), [2, p. 187]. Then G does not
satisfy condition (F'), a contradiction,

7. Related results. We note that, for an arbitrary group, con-
dition (N*) implies condition (N), and condition (N) implies condition
(F'). Using the new definitions for condition (N) and (F') in the
theorems which follow Lemma 5.2 in the paper of Baer [1], the
theorems are true. The proof are the same as given in [1] by using
Theorem 7 of this paper in the place of Lemma 5.2, Therefore,
these results will not be stated here.

In Lemma 6 it was shown that condition (XV,) implies condition
(F,). In the remainder of this paper, the converse of Lemma 6 will
be considered.

LEMMA 8. If the group G satisfies condition (F,) and N <] G
such that [G:N]=q° where t <k, oN)=1p" p and q are primes,
and N is elementary Abelian, then G satisfies condition (F).

Proof. Case 1. Suppose p =¢q. Let H<] K< G where K/H is
isomorphic to Gi(p). Since N is elementary Abelian it follows that
(KN NH)/H is an elementary Abelian subgroup of K/H. Then

[KNNH:H}<»
by Lemma 1. Then

[K:H]=[K:KnNH|-[KNNH: H]
<[G:NH]-[KN NH: H] < p'** < p*+* ,

Therefore, K/H 1is isomorphic to G,(p) where ¢ < k. But G satisfies
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condition (F,), a contradiction. Hence G satisfies condition (F').

Case 2. Assume p # q. Let H<| K £ G where K/H is a group
whose order has only one prime factor. If K/H is a g¢-group, then
its order is at most ¢* < ¢*. But G satisfies condition (F',), so in this
case G satisfies condition (F'). In the case where K/H is a p-group,
it is then elementary Abelian and hence satisfies condition (F').

THEOREM 9. Let G be a group satisfying condition (F, + N,),
then G satisfies condition (N,).

Proof. Deny and let k£ be the minimal integer for which G
satisfies condition (F', + N,), but not (N,). Then there exist subgroups
S c T < G such that there is a chain

S=8<8<---<8,<8,.=T,

n<k,and S ¢ T where this chain is the complete lattice of subgroups
between S and 7. Since T satisfies condition (N,), we have n = 1.
By the minimality of k&, we get n = k.

But we have S; <|S; for 0 <+ <j<=<#k+ 1, except for the one
case where ¢ =0 and j = k + 1, since k¥ was chosen to be minimal,

Then S;.,/S; has no nontrivial subgroups and, therefore, [S;.,: S;] =
p; for some prime p;. Hence S;,,/S; is Abelian.

Let p,=p. If ye T, then S¥ = S, since S, <|{ T, but Sy may or
may not be S,. Let W = ),erS{. Then W <{T. Since [S,:S¢] =
[S.:S,] = », we have z*e Sy for all zeS, and all ye T. Hence
x2*e W for all xeS,. Thus S,/W is a p-group.

Since S/S, is Abelian, S;= S,. But S;<{T, so S;i< Sy for all
yeT. Hence S;=W and S/W is Abelian. Then S,/W is an
elementary Abelian p-subgroup of T/W.

Since S, <] S, and S, 41 T, we have S, & Ni(S,) < T. But there

are no subgroups between S, and T so Ny(S,) = S,. Hence
[S;: W] =1[S,: NS¢ £=x[S,:S¢] = pr*.

Since S,/W is a finite p-group, [S.: W] is a power of p, say »p™,
where 2 < m < p,.

Now T/W is a finite group satisfying condition (N;). Then T/W
is nilpotent [3, p. 216].

Case 1. Suppose £ =1 and let ¢ = p,. Then [T/W :S,/W] = gq,
T/W satisfies condition (F)), and S,/W is elementary Abelian. By
Lemma 8, T/W satisfies condition (F'). And by the revised Corollary
5.3 in [1], T/W satisfies condition (N). In particular, T/W satisfies
condition (N;). Hence S,/W <1 T/W and S, <1 T, a contradiction.

Case 2. Hence k>1. Then S;<]S,., and o(S;,./S;) = p.p;-;. Hence
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S;../S; has proper subgroups of order p;, and p;.,. By assumption,
S;../S; has exactly one proper subgroup. Hence p;, = p;.;,. Thus

D =D =Py == Py

Thus [T/W:S,/W]=p* and S,/W is elementary Abelian. By Lemma
8, T/W satisfies condition (¥'). Then T/W satisfies condition (N) by
the revised Corollary 5.3. in [1]. In particular, 7/ W satisfies condition
(N,) and S/W < T/W. Then S, < T, a contradiction.

COROLLARY 10. If G = U, Z.(G) and G satisfies condition (F),
then G satisfies condition (N,).

Proof. Let Sc T < G be such that S is maximal in 7. But T
is nilpotent and hence S <] T [3, p. 220]. Therefore, G satisfies con-
dition (N,). By Theorem 9, G satisfies condition (N,).

REMARK. In Corollary 10, if the hypothesis of nilpotency is
replaced by solvable, the theorem is not true. As an example
consider the symmetric group S;. A subgroup of order 2 is maximal
in S;, but not normal. Hence S; is solvable and satisfies condition
(F,) for every integer k>0, but does not satisfy condition (V).

The author wishes to express his appreciation to Professor W. R.
Scott for his suggestions in the preparation of this paper.
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