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In this paper we explicitly find the asymptotic behavior,
for large t, of the probability that a transient d-dimensional
stable process first (last) hits a bounded Borel set during the
time interval (t, o).

Assume that X(t) is a stable process on R? (d-dimensional Euclidean
space) having exponent « < d and normalized so that the paths are
right continuous with left-hand limits at every point. Assume further
that [X(¢) — X(0)]¢t~V* is distributed like X(1) — X(0), and moreover,
that X(1) — X(0) has a genuinely d-dimensional distribution on R¢. [In
particular, every symmetric stable process on R¢ with 0 mean (when
it exists) satisfies these conditions.]

From these assumptions it follows that X(t) — X(0) has a bounded,
continuous density, f(¢,«), which satisfies the well-known scaling pro-

perty
(1.1) f(t, ) =t~ f(1, t~x) .
For a Borel (more generally, analytic) set BC R?, let
Ve = inf{t > 0: X(¢) e B}
denote the first hitting time of B. As usual we set V; = o if
X(t)e B
for all ¢t > 0. Our main purpose in this note is to establish the follow-
ing.

THEOREM 1. Let B be a bounded Borel (or analytic) subset of
R*.  Then under the above assumptions on X(t),

(12) Imteo=P(t < Vy < @) = PV, = «)CB) [ L - 1] 11,0,

t—o0

where C(B) is the natural capacity of B.

Previously, (by using a different method) Joffe [2] established this
result for symmetric processes with (d/2) < @ < 1 when B has a non-
empty interior, and Spitzer [4] (Lemma, p. 114) established this result for
arbitrary compact B in the case of 3-dimensional Brownian motion.
In the case of recurrent stable processes the analogue of Theorem 1
can be found in [3].
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It is interesting to compare Theorem 1 with the following, much
easier

THEOREM 2. Let
Ty, =inf{t =2 0: X(s)¢ B, all s >t}

be the last hitting time of B. Then under the same conditions as
Theorem 1,

(1.3) lim ¢@a-1P(T, > t) = C(B) [% _ 1]_lf(1, 0).

t—oo

2 Proofs.

Proof of Theorem 1. A first passage decomposition yields
@1) Pt < Vi< ) = | PAVs>t, Xt) e dy)PYVs < =)
t
= [t v = o = || Haw, ds, d0rftt - 5,5 = 9 |Pu(Vs < )ay,
Rd 0JB
where here and in the following,

Hy(x, ds, dz) = P,(Vzeds, X(s)edz),

and B is the closure of B. But it is a known fact ([1] Prop. 18.4)
that there is a measure, e,(dy), with support contained in B (the cap-
acitary measure of B) and finite total mass C(B) (the capacity of B),
such that
(2.2) P(Vs < ) = | gtu — eudw) ,
where

o@) = | e, mpae
is the potential kernel density for the process X(¢). Setting

R(t, @) = | fts, w)ds

t

and using the fact that
(2.3) [ ftts v — @aw — vy = Bt w — ),

we obtain from (2.1) that
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2.4) Pt < V< o)
SE [R(t, Yy — ) — SES:HB(x, ds, dO)R(t — s, ¥ — z)]eB(oly) .

From the scaling property (1.1) and the fact that f(1,x) is con-
tinuous, we see that lim, . t4°f(t, o) = f(1, 0), uniformly in « on com-
pacts, and thus

(2.5) lim £99-1R(¢, x) = f(L, 0)[% _ 1]'1 ,

t—o0

uniformly in « on compacts. Set

Rt) =t [ L 1]7,
[24

Then from (2.5),

(2.6) tim | BEL=D o,(a9) = 101, 00(8)

and

lim lim STU XEHB(x, ds, dO)R(t — s,y — z)eB(dy)]R(t)“l

P—00 t—co B

= lim SH(x ds, BYC(B)f(L, 0) = P,(V, < =)C(B)f(1,0) .

To0

(2.7)

From (2.4), we see that in order to complete the proof it suffices
to show

(2.8) limlim sup R()"* §;S_S_H3(x, ds, d)R(t — 5,9 — 2)ex(dy) = 0 .
T—eo t—o0 BB
¢ t/2 t—T s .
To accomplish this, decompose S as S + S -+ S . Since
T T t/2 t—T
sup f(1,2) = K< oo,

it follows from the scaling property that R(¢, z) =< KR(t) for all ¢ > 0.
Setting A = KC(B), we obtain

8”2 <A YHPZ(VB cds)R(t — s) < AR()2)P(T < V5 < ),

T T

and thus

lim lim sup R(¢)™ S " 0.
T 1

t
T

Next observe that
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S‘ <A S’/‘T PAVyeds)R(t — 5) = AR(T)P,(t/2 < V, < o).

/2 2
By (2.4) this last term is dominated by A®R(T)R(t/2), and thus
t—T
lim lim sup R(t)"* S —0.
T t t]2
Finally, from (2.2) we see that
| =0 i s, a0 | ot - 2yenan = | Puvieas).
t—1T t—TJB B t—T7
But
Pt—T<Vy=t) =SRsz(VB >t —T,X(t - T)edy)P(Vy = T)
= |, At = T,y — P(Vs < Ty = K(t — Ty | _PyV, = Thay .
Since the paths X(¢) are bounded a.s. on [0, T'], we see that for each

T there is a sphere S, D B, such that P(X(t)e Sy) =1/2forallt < T
and ye B. But then

1S, | = SRdP,,(X(T) e Spde = Ld da S:S_B_HB(x, ds, dy)P,(X(T — s) € Sy)

1

>
-2

S PV, < T)da .
RA
Thus

lim R(t)~ S’ ~0.

t—oo t—T
This completes the proof.

Proof of Theorem 2. Clearly
PAT, > 1) = | _fit,y — )PV, < =)dy .

Using (2.2) and (2.3) we see that
PAT, >t = |_R(t,y — w)esdv)

from which the theorem follows.

REMARK. When d/2 < a < d, it is possible to establish Theorem
1 by a much simpler argument. Set
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Q@) = [TerPut < V, < it

Hiw, dy) = S:e—wpx( V,edt, o(t) e dy)
and

RMz) = S:R(t, z)edt .
Then from (2.4) we obtain
@9 @ = | |[Re - - | Be are -2 .
It follows from (2.5) that uniformly in x on compacts,
lim R@— = 7L, 0)[% - 1]"?(2 —da) .
Consequently, from (2.9), we see that
lim Q3@)=41* = f(L, OC(B)P.(V, = = )[% - 1]—11“(2 — dla) .

An appeal to Karamata’s theorem, and the fact that P,(t < Vy < o)
is monotone in ¢, then yields (1.2).
The above argument breaks down when a < d/2 since

lim RMx) < oo,
ALo

and the more complicated proof given previously is needed.
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