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ZEEV DITZIAN

In this paper we shall try to answer two open questions
posed by Dauns and Widder in their paper ‘‘Convolution
transforms whose inversion functions have complex roots”
(Pacific Journal of Mathematics, 1965, Volume 15(2), pp. 427-442)
on page 441,

We shall be interested in the function G,,(t) defined by
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where

(1.2) B = 11 (1-5)
k=m+1 ar

‘where {a,} is a sequence of complex numbers such that
larg a, | < g: /
for a fixed 7,0 <7 < /4,
}j.;‘.akl‘z<w, 0 <Rea, <Rea,., for all ¢
and
(1.3) lm (@ P S, @l = oo .
Mmoo k1

If a sequence {a,} satisfies all the above assumptions, we shall
denote it by {a,} cclass C. We obtain condition B, defined in [1, p.
436], if we replace (1.3) by (1.4)

oo

(1'4) lim !(ln%,l [4/3 Z iak |~2 = oo ,

n—oo n+1

If we take a, = £*1/2 < N < <o then {a,}eclassC, but of these
sequences only those for which 1/2 <\ < 8/2 satisfy condition B.
We define as in [1]

(1.5) V.= 3 a* and S, = "Zlmkw

k=m+1 k=m+
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and whenever {a,} € class C we prove

(1.6) nn1§” (4G () | dt = (coS* g, — sin®gp,,) "

where

1 T s
m = —ar Vm<——<ar Vi ——>
P 2 g D) g < 5
which answers the question posed in remark (3) [1, p. 441].
We shall also prove under the restriction {a,} e class C Corollary
4.3 and an analogous theorem to Theorem 4.1.
As a by product we shall have

N d'rb . 1 S 1/2 dn S
1.7 lim S =G, (S¥*t) = ——— (=2 —2 Em
(L7 S Gen(53°0) Vm<m>dﬂﬂd 4n>

which is more than necessary for proving other results and is an
interesting estimate of G{(t) by itself.

2. Some lemmas. In the author’s thesis [2] and in a paper in
collaboration with A. Jakimovski [3; Lemma 2.1.] the following lemma.
was proved:

LEmMA 2.1. Suppose S5, |a,|™ < oo then the assumptions
£ oo 14+(af2)
>y —Eta) — -2 —> o
(2.1) k;"ﬂ:-ﬁ—l ! ak l 0<<k=2m+1 ! ak l > > n
for some fized a > 0 and
2.2) 1m@wmwX§\mﬂﬂﬂ

m—oo k>m k=m-+1

are equivalent, and therefore the assumptions (2.1) for all positive
o are equivalent.

Proof. Let us assume (2.1) for some « > 0. If (2.3) is not valid

then a subsequence {m(r)} of m + 1, m + 2, --+ exists such that for
some 58 >0

((max Ja,|)Sz, 2 6> 0

kzm(r)+1

for all » = 1. Therefore

Ms

14 (af2)
la, |7 = ( max |a, l““) = QS

k= Ezm(r)+1

3

(r)+1

which contradicts (2.1).
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Assuming (2.2) then

oo

:EJ_ la, | = S Ja, |2 < (max 2, i_“>Sm

k 1 k=m+1 kzm+1
R al?
= ((max |a, i““)Sﬁ) Spkaln
kzm+1 ’
— O(an+(a/2)) (m — oo) .

The following two lemmas are easy to verify.
LEmMMA 2.2, If {a,}cclass C then {a,} satisfies assumption (2.2).
If jarga,| <w/4 — 15,0 < Rea;, <Rea;., and {a,} satisfies assump-

tion (2.2) then {a,} € class C.

LEmMma 2.3. If larga,| < (w/4) —n and 3 |a,|™ < oo, then

2.3) cos (% _ 2y;>sn < |V, <8,.

We define now F',(z) by

— . —i/2 = ‘f‘ - zg
(2.4) F(2) = E,(2-8;77) . :%1” <1 a;sm> ’

LEMMA 2.4. Suppose {a,}eclassC then there exist constants
k(p) > 0 independent of m so that for all real y

(2.6) | FL(y) | > 1+ Kpy™ for m > mng(p) .

Proof. Define a, = |a,| e, — (x/d) +1n < B, <(n/4) — 7

| =| 11 (-5
fe=m -1 a’ksm
= 11 (1+ Y cos 28k>
k=m+1 lak lhsm
y®cos (ﬂ — 2:7>
{1+ 2
e |y |2 Sm
. Y cos? <12E- — 277)
=1 pz:'ll Stp! k(%m |Gy =+ Qo 77

i k(D)Fk(F)

Since we have lim,,_ . max;.,, |a,|*S;* =0 we can find m,(p) so
that for m > m(p) max,., |a;?| < (1/2p)S,.. Therefore we have
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' |Gy * o Qi |7°
k(z)>m
k)% (5), ]
p—1
= > S, — 2o |~2> |Gy = v s Qg |7

k(1)>m
k()F#k(5),i7]

1 s 1y
= —O, > [ Qs =+ Qripen | “2(—-—) S, .

2 k(i)@?{?ﬁj#i 2
Hence
cos"(% — 27]>S£’,L
FLGy) | =1+ g =1+ k(pyy™.

Szpl 27
3. The asymptotic estimates for G{¥(t).

THEOREM 3.1. Let {a,} € clase C; then for all n =0,1, ...

. a 1 /S, \* dr S
1) limSe ¥ g sy =1 (Su - On
(.1 lim 5.7 G (527) 1/471'( Vm> e eXp( t 4Vm)

uniformly im — co <t<oo (we choose arg V> = (1/2)arg V,,).

Proof. Following the proof of the special case » =0 and arg}a, =0
by Hirschman—Widder [4; pp. 140-1] we have

SIG,, (SHt) = 1 Si"" etdz :_1_S°° evtdy
m 2m m 27'[,'?/ i 2m(s) 27[_ o Zm(?/y) .

By an estimate of [5; p. 246] we have for |z| < R and

Bef|ay | S =

|10g{<1 _ 7 )exp (zﬂ/aism)}] <4r 1

S, |, [P Sy T
Recalling that >, 1/a;S,, = V,/S, and since by Lemma 2.1
o 1
>

—_— = 0(1) m — co ’
kw1 |y [PSH?

we have for |z| < R and m > my(R)

,Fm(z) — exp<~ V};’f)‘ <& .

Since by Lemma 2.4 R > Ry(e,, ) implies

= |yl"dy R E lyl*dy
< g and —_— <,
SR | o (19) | S—w | Fo(2y) |
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we have
s G (S
at”

_ LS‘” L)
27? - Fm(?/y)

%Sl@y)” exp (— %y + iyt)dy + o(l)

& {on (- £2)

%o |7 exp [ (VIS — SV Iy} + o)

—oo

B (%>1/2 g;{exp <* fg:)—z%{grehzgdz} + o(1)

= 1/1_7? <%>1/2% exp (-T%) + o(1) (m ] o)

i

m

Il

using the residue theorem, the fact that e is entire and that

|larg Vi?| < 774-[- for all m .
As a corollary we derive
THEOREM 3.2. If {a,} satisfies assumption C then

(3.2) r |Gt | dt = (cospy, — SiN’p,) % + o(1) 1 —> oo
and

(3.3) r | 1GL(t) | dE = (cos'p, — SIN'@) ™ + o(1)  mm— co
where 2¢, = argV,.

Proof. Since by Lemma 2.4 of [1].
(8.4) | Gen(t) | < MS*exp (— KS;* [ t])

we have

" 16t =" 180610 1dt = " 150Gy de

+od) (BT ).

This combined with (8.1) and a simple integration yield (3.2).
To prove (3.3) we use Lemma 3.2 case A (since for {a,}eclass C
S, = 4rt, =4 a,., | for m > m,) which is



254 ZEEV DITZIAN

(3.5) | GLn(t) | = M.S," exp (— K,S31*

i) .

Therefore we have

|1 SatGLusie ¢ 1t < M, —
R

f — 1% = o(1) R— oo,
(Ky)

This implies

S” G0 dt = |7 SutGh (S | dt

S " poxp(~L5.Re L
21/47r S_ t exp< 1 S.. Re Vm>dt + o(1)
= <<_f1€;_v|7> " o(1) = (cosp, — sin'p,) U - ol) (m ] ).

4. Remarks. I. For the theorems and the lemmas proved in
this paper 0 < Rea, < Rea,,, is not essential and the condition (2.2)
can replace it and (1.3).

II. Theorem 3.1 which replaces Theorem 4.1 yields for the case
n = 0 only the following

(4.6) G,n(t) = A V)2 exp (—t3/4V,) + o(S7*) m — oo

but if one follows the proof of Theorem 4.1 of [1] and Lemma 4.2 of
[1] almost litarally one obtains for {a,} e class C

(4.7 G(t) = (4xV,) " exp (—7/4V.,) + o]ty

—2 3/) m — co

which is somewhat more general.
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