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Let T be a closed linear operator with domain and range
in a complex Banach space X The Fredholm set Φ(T) of T
is the set of complex numbers λ such that λ — T is a Fredholm
operator. If the space X is of finite dimension then, obviously,
the domain of T is closed and Φ{T) is the whole complex plane
C. In this paper it is shown that the converse is also true.
When T is defined on all of X this is a well-known result due
to Gohberg and Kreϊn.

Examples of nontrivial closed operators with Φ(T) = C are
the operators whose resolvent operator is compact. A charac-
terization of the class of closed linear operators with a nonempty
resolvent set and a Fredholm set equal to the complex plane
will be given.

Throughout the present paper X and Y will denote complex Banach
spaces. Let T be an arbitrary closed linear operator with domain &(T)
in Xand range &(T) in Y. The nullity n(T) of T is the dimension
of the null space ^r(T) of T. The defect d(T) of T is the dimension
of the quotient space Y/&(T). No distinction is made between infinite
dimensions, so that n(T) and d(T) may be nonnegative integers or + °°.
We say that T is Fredholm if n{T) and d{T) are both finite. Note
that d(T) < oo implies &(T) is closed (cf. [5], Lemma 332).

In 1957 Gohberg and Kreϊn [3] showed that if A is a bounded
linear operator on X with Φ(A) = C, then the dimension of X (denoted
by dim X) is finite. The following theorem extends this result.

THEOREM 1. Let T and S be hounded linear operators from X
into Y. Suppose that S is a homeomorphism, and that T + XS is
Fredholm for each λ e C. Then

dim X ^ dim Y < oo .

Proof. Since S is a homeomorphism, &(S) is closed and n(S) = 0.
By a well-known stability theorem (cf. [5], Theorem 1), this implies
the existence of a positive constant p such that for 0 < | μ \ < p

d(S) = d(S) - n(S) = d(S + μT) - n{S + μT) .

The right-hand side is finite because S + μT is Fredholm for μ Φ 0.
Hence d(S) < °°, and so S has a bounded left inverse, say R. Then
n(R) S d(S) < oo and d(R) = 0, so R is Fredholm. Define A =
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Then A is a bounded linear operator on X and

λ - A = XRS -RT = R(XS - T) .

For each complex value of λ, λ — A is the product of two bounded
Fredholm operators and hence is Fredholm. But Φ(A) = C implies
that dim I < w by the result of Gohberg and Kreϊn ([3], Theorem
3.2). Then dimΓ = dim X + d(S) < oo, concluding the proof.

COROLLARY. Let T be a closed linear operator with domain
!2${T) and range in X. Then dim X < oo if and only if 2$(T) is
closed and Φ(T) = C.

In [1] Caradus has proved that if T is a closed linear operator
with domain and range in X such that dim X/&(T) < oo, φ(T) = C
and such that the resolvent set of T is neither empty nor the whole
complex plane, then dim X < oo. The following lemma shows that
Caradus' result is contained in the Corollary.

LEMMA. Let T be a closed linear operator with domain in X
and range in Y. Suppose there exists a closed subspace M of X
such that X= 3?{T)@M. Then ^r(T) is closed.

Proof. Let Y± be the Banach space Y x M, with the norm

11(2/, m) || - || y\\ + i| m| | .

Define the linear operator J from X into Yi by setting

J(x + m) = (Tx, m)

for each xe &{Ύ) and meM. It is easily verified that J is a well-
defined closed linear operator. Since the domain of J is the Banach
space X, the closed graph theorem implies that J is bounded. Hence

for each xe^(T) and m&M. In particular,

for each xe ϋ?(T). Thus T is both closed and bounded, implying that
&(T) is closed.

We have learned recently that similar statements for the range
of a closed linear operator are proved by S. Goldberg in [4]. That
this can be done follows easily from the observation that the range
of a closed linear operator is always the domain of some other closed
linear operator, and conversely (cf. [6], Chapter IV).
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The Corollary states that the closed linear operators T with closed
domain and Φ(T) = C are trivial. Examples of nontrivial closed oper-
ators whose Fredholm set is the complex plane are the operators with
compact resolvent (cf. [7], § 2). The following theorem shows that each
closed operator T with a nonempty resolvent set p(T) and with Φ(T)~C
is characterized by the fact that for each μe p(T) the resolvent (μ — T)*1

is a Riesz operator. For the definition of Riesz operators and one of
their characterizations we refer to Dieudonne ([2], XL 4, problem 5).

THEOREM 2. Let T be a closed linear operator with domain and
range in X. If Φ(T) = C, then (μ — T)"1 is a Riesz operator for
all μep(T). Conversely, if (μ — T)"1 is a Riesz operator for some
μeρ(T), then Φ{T) = C.

Proof. We may assume that dim X = oo and that p(T) is not
empty. Take μ in ρ{T) and let A = (μ - T)-1. Then for λ Φ μ,

( λ _ T)(μ - T)-1 = (μ- λ)(ζ - A) ,

where ζ = (μ - λ)-1. This implies that Φ(T) = C if and only if Φ(A) =
C\{0}. Hence it is enough to show that A is a Riesz operator if and
only if Φ(A) = C\{0}. In order to do this, let 3T be the ideal of all
compact linear operators in the Banach algebra Jίf(X) of all bounded
linear operators on X, and let π denote the canonical homomorphism
from £f(X) onto the quotient algebra £?{X)lsr. Then it follows
from Atkinson's characterization of the class of all Fredholm operators
in j£f{X) that ζ — A is Fredholm if and only if ζ — π(A) has an
inverse in ^ ( I J / X , So Φ(A) = C\{0} if and only if the spectrum
of π(A) in Sf{X)\3T is {0}, i.e., the spectral radius r(π(A)) of π(A)
is zero. But

= lim || π(An) \\ίln = lim [d(An,

where d(An, 3f) is the infimum of \\An - K\\ for K e J T . Thus
φ(A) = C\{0} if and only if

lim [d(An, 3T)fn = 0 ,
n—>°o

which is equivalent to the statement that A is a Riesz operator (cf.
[2], XI. 4, problem 5).

When T is a self-ad joint closed linear operator in a Hubert space
Theorem 2 can be strengthened. This is because (μ — T)-1 is normal
for μ e p{T), and a normal operator is Riesz if and only if it is compact.
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Hence, in this special case, Φ(T) = C if and only if (μ — T)*1 is compact
for each μ in p(T).
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