
Pacific Journal of
Mathematics

ON ANTI-AUTOMORPHISMS OF VON NEUMANN ALGEBRAS

ERLING STORMER

Vol. 21, No. 2 December 1967



PACIFIC JOURNAL OF MATHEMATICS
Vol. 21, No. 2, 1967

ON ANTI-AUTOMORPHISMS OF VON
NEUMANN ALGEBRAS

ERLING ST0RMER

Two types of * -anti-automorphisms of a von Neumann
algebra % acting on a Hubert space 3ίf leaving the center
of % elementwise fixed are discussed, those of order two and
those of the form A->V~ιA*V, V being a conjugate linear
isometry of <%^ onto itself such that V2 e 1. The latter anti-
automorphisms are called inner, and are the composition of
inner ^-automorphisms and * -anti-automorphisms of the form
A —> JA*J, where J is a conjugation, i.e. a conjugate linear
isometry of £ίf onto itself such that J 2 = I. The former
anti-automorphisms are also closely related to conjugations;
they are almost, and in many cases exactly of the form A -->
JA*J. Moreover, the existence of * -anti-automorphisms of
order two leaving the center fixed implies the existence of a
conjugation J such that J%J — Ψι, and such that JA*J = A
for all A in the center of 21.

There are two main problems concerning *-anti-automorphisms of
von Neumann algebras, namely their existence and their description.
In the present paper we shall deal with the latter question. It turns
out that anti-automorphisms are closely associated with conjugations,
a conjugation being a conjugate linear isometry of a Hubert space
onto itself whose square is the identity. This is not surprising, as
such maps induce most of the important anti-isomorphisms of von
Neumann algebras, cf. [1], We shall characterize two classes of anti-
automorphisms, namely those of order two leaving the center of the
von Neumann algebra elementwise fixed, and the so-called inner anti-
automorphisms, both characterizations being in terms of conjugations.
In the process of doing so we shall make heavy use of Jordan and
real operator algebra theory, as developed in [8], [9], and [10]. The
second section is devoted to this theory; we shall generalize some of
the results in [8] and [9], and in particular classify all weakly closed
self-ad joint real abelian operator algebras.

We refer the reader to [1] for terminology and results concerning
von Neumann algebras. If & is a family of operators on a Hubert
space we denote by &8A the set of self-adjoint operators in ^ . We
say & is self-adjoint if A* e & whenever A e ^ l & is a self-
adjoint real operator algebra if <% is a self-adjoint family of operators
which form an algebra over the real numbers. By a JW-algebra we
shall mean a weakly closed real linear family of self-adjoint operators
closed under squaring. By a real ^-isomorphism of one self-adjoint
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real algebra into another we shall mean a one-to-one real linear map
φ such that φ(A*) = Φ(A)*y and φ(AB) = φ(A)φ(B) for all A, B in the
algebra. By a ^-anti-automorphism (or just anti-automorphism) of a
von Neumann algebra 21 we shall mean a one-to-one (complex) linear map
φ of 31 onto itself such that φ(A*) = φ(A)* and φ(AB) = φ(B)φ(A) for
all A, Be 21. We note that such a map is ultra-weakly continuous
[1, Corollaire 1, p. 57]. We shall identify projections and their ranges.
If 21 is a family of operators and ̂  is a set of vectors we write
[21 ̂ £\ for the subspace generated by all vectors of the form Ax with
Ae 21 and xe .^Γ.

The * -anti-automorphisms φ studied in this paper will all turn out
to be spatial, i.e. there exists a conjugate linear isometry V of the
Hubert space Sίf such that φ(A) = V^A^V. That any such map φ
is a *-anti-automorphism of &}{£ίf)—the bounded linear operators on

—is seen as follows. By polarization (Vx, Vy) = (x, y) for all
, y e 3ίf. Hence

, y) = (x, V-'AVy) = {Vx, AVy) = (V^A^Vx, y)

for all x,y, and (F^AF)* = V-χA*V for all A e ^ ( ^ T ) . Clearly φ
is linear and anti-isomorphic. If (ea)aei is an orthonormal basis for
έ%f then the map J: J^ Xaea —» 2 ^«e« ^s a conjugation of Sίf, hence
there exist * -anti-automorphisms of factors of type I. The problem
is open for general nontype 1 factors; however, it is known to the
affirmative in constructed examples, a few examples will show how.

Let G be a countable discrete group such that the set {ggQg~ι:
g eG} is infinite for every g0 Φ e. Let 21 be the usual Hubert algebra
of complex functions x on G having finite support, where multiplication
is convolution, x*(g) = x(g~λ), and

(a, v) = Σ %(g)y(g),
g

[1, pp. 301-303]. For xel\G) set Jx(g) = x(g). Then J is a conju-
gation. Let 2ί(G) be the Z/Ί factor of all left multiplications Lx by
bounded dements of 12(G). Then simple calculations show

(i ) x bounded implies Jx bounded.
(ii) JLXJ = LJx for all bounded x.

Thus J%(G)J = 2I(G), and φ(A) = JA*J is a *-anti-automorphism of
2ί((?) of order 2.

By specializing G, one can get 2I(G) to be any one of the three
known IIX factors on a separable ^, see [6].

In the notation of [7, p. 112] one can define a conjugation / by

JF(y, x) = F(7, x) .
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Then JUyJ= Uyj and JLΦJ = L$. So J induces a *-anti-automorphism
of order 2 of the type 177 factor obtained in that construction.

2, Real operator algebras. We begin this section with four
lemmas all of which are practically known.

LEMMA 2.1. Let 2Ϊ± and 2ί2 be C*-algebras with identities 7; let
p be a real ^-isomorphism of Stj. into 2I2 such that p(I) = 7. Then there
exist two orthogonal central projections E and F in 2ΐ2 with E+ F= I,
such that Ep is complex linear and Fp is complex conjugate linear.

Proof. Let A = ρ(il). Then A2 = p(ilf = ρ((ilf) = ρ(-I)= - 7 .
Thus A = %E — iF with E and F as above. Clearly Ep is linear and
Fp is conjugate linear.

The next lemma is a slight generalization of [9, Theorem 2.4],
The proof is practically the same as that in [9], and is omitted.

LEMMA 2.2. Let & be a self-adjoint weakly closed real operator
algebra. Then & + i& is a von Neumann algebra.

If SI is a J'W'-algebra or a von Neumann algebra and E is a pro-
jection in 21 then its central carrier with respect to 21 is the smallest
central projection in 21 greater than or equal to E. It is denoted by
CE(%). The next lemma is a modification of [8, Lemma 8.1].

LEMMA 2.3. Let & be a self-adjoint weakly closed real operator
algebra. Let E be a projection in &. Then CE(&SA) =

Proof. Let £& denote the von Neumann algebra & + i& (Lemma
2.2). In view of [8, Lemma 8.1] it suffices to show CE(&SΛ) = [^SΛE]
belongs to &\ Let xeE,Ae &SΛ, B e &. Then

BAx = (BAE + EAB*)x - EAB*x e [&SAx] V E ^

Thus B leaves [&8AE] invariant, hence έ%? leaves [.:^SΛE] invariant,
hence [^SΛE]e^\

The proof of the next lemma is a modification of that of a similar
result in the proof of [9, Theorem 6.4].

LEMMA 2.4. Let & be a self-adjoint weakly closed real operator
algebra. Let c^ denote the center of the von Neumann algebra & =
& + i&. Assume ^SΛ Φ ̂  Π &8± Then there exists a projection
E ^ 0 in ^ such that E^ n & = {0}.



352 ERLING ST0RMER

Proof. Let E1 be a nonzero projection in ̂  which is not in &8A.
Let F1 be the smallest central projection in &8A such that F1 ^ Eγ.
Then Fxφ Ex. E^ is an ideal in ^ hence Ex& Π ^ ^ is a weakly
closed Jordan ideal in the JΐF-algebra &8A. Hence there exists a
central projection F2 in &8A such that Ex& = &SA Π F*&8A [10].
Then F2 ̂  JE ,̂ hence F2 < J^. Let F^F,- F2. Then F 3 ̂  0 and belongs
to ^ n &8A (Lemma 2.3). Let E = E,F3 = E1- F2. Then E Φ 0 and
belongs to ^. Moreover 2 £ ^ is an ideal in &. As before there exists
a central projection F4 in ^ ^ such that E& Π ^& 4 = FA&SA. Then
F4^ E ^ F3. Since £7 ̂  £*, £ 7 ^ Π ^ ^ c F2§I, hence F4 ^ JP2. But
F3F2 = 0, so FA = 0. Thus Eg£ Π ̂ ^ = {0}. Let A e E^ Π ̂ .
Then A*A e E& Π ^ ^ = {0}, so A = 0, E<^ Π ̂  = {0}.

LEMMA 2.5. Lβί ̂  6e α self-adjoint weakly closed real operator
algebra. Let & = & + i ^ αwd ^ be the center of &. Then
there exist three orthogonal projections P, Q, R in cέ? such that
P + Q + R = I and such that,

( i ) P^SΛ = P^ n &8Λ.
(ii) Q^Π^ = R^Πέ? = {0}.
(iii) R^SA = R^ n i ^ 4 .

Moreover, the map R& —> Q ^ δ̂ / 2?A —> QA ^ΐίfc A e & is a real
^-isomorphism onto.

Proof. We may assume & Π i& = {0}. Let P be the largest
projection in ^ such that P^SA = P ^ Π ̂ ^ . Assume P Φ I, so
^ 4 ^ ^ Π ^?4. From Lemma 2.4 we can choose a projection ζ> ^
I — P in ^ , maximal with respect to the property Qέ% Π &SA. = {0}
Let i£ - I - P - Q. Then ^ ^ n &8Λ = {0}, for if not, let E be a
projection in ^ with E ^ R. By Lemma 2.3 CE(&8A) e <£*, and
CE(&8j) ^ J? since E ^ R. We may assume Ee^. By maximality
of P, . E ^ ^ ^ ^ ^ Π ̂ ^ . By Lemma 2.4 there exists F Φ 0 in
W,F^E, such that ί W Π ^P = {0}. Then (Q + ί 7 ) , ^ n £PSΛ = {0}, for
if A G (Q + i ^ 7 ) ^ n &SJL then A = AQ + AF. Then AF = AEe ^?SA,
hence AF = 0. Therefore

A = AQe Q^ n &ίa± = {0}, A = 0, (Q + F ) ^ n &ta± = {0} ,

contradicting the maximality of Q. Thus F = 0, hence E = 0, hence
Π . ^ 4 = {0}. As in the proof of Lemma 2.4

n ^p = Λ ^ n ̂  = {0}.

Assume J B ^ Π i ? ^ 4 ̂  - β ^ 4 . Then Lemma 2.4 yields the ex-
istence of a projection F Φ 0 in i ϋ ^ such that F& Π i 2 ^ = {0}.
Then (F + Q)& n ̂ P = {0}, for if 4 6 ^ + Q ) ^ Π -5P then A =
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AF + AQ e &. Hence RA = FA e F^ n R& = {0}, so FA = 0.
Thus A = AQe Q^ n ^P = {0}, A = 0. Thus (F + Q ) ^ n ^ = {0},
contradiction the maximality of Q. Thus R^ Π R&SA = R^SA-

Finally let p denote the map i?^? —> Q^> defined by i2A -* QA,
A e ^?. Then p is a real ^-isomorphism onto. In fact, QA = 0 with
Ae(I - P)& if and only if A = RAe R& n ^ = {0} if and only if
A = 0, and by the same argument, if and only if RA — 0. Thus p
is well defined. It is then clear that p is a real ^-isomorphism onto.
The proof is complete.

We are now in the position to classify all self-adjoint weakly
closed abelian real operator algebras. If X is a compact Hausdorff
space we denote by C(X) (resp. CR(X)) the complex (resp. real)
continuous function on X.

THEOREM 2.6. Let & ββ a self-adjoint weakly closed ahelian
real operator algebra. Let & denote the (abelian) von Neumann
algebra & + i&. Then there exist three orthogonal projections E,
F and G in & such that E + F + G = I, and such that

(ii)
(iii) G& = {AR + p(A)Q : R and Q are projections in & such

that R + Q = 6r, Ae R&, p is a real ^-isomorphism of R& onto

Proof. Let P, Q, and R be the projections found in Lemma 2.5.
We first consider P&. Since P&SA = P& Π &SΔ* P^& and

Let ^~ = P& Π i P ^ . Then ^ " is a weakly closed ideal in
hence there exists a projection F m & such that F ^ = ^ ~
so Fe &. Let E = P - F. Then Ee &, E& n ί ί 7 ^ = {0}. By
spectral theory we may assume E& = C{X). Since

E^SA + %E&SA = E^ = C(X) ,

an application of the Stone-Weierstrass Theorem shows Έ&SA = CR{X).
Since E& n i J S ^ = {0}, E& = CR(X) = E^SA, (i) and (ii) are taken
care of.

Let G = I - P. Then Ge^,G = Q + R. By Lemma 2.5

By the argument in the preceding paragraph there exist two pro-
jections Ex and F1 in R& such that

E1 + F, = R,
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Let p be the real ^-isomorphism of R& onto Q& defined in Lemma
2.5. Let H = E1 + ρ(E^. Since JBi = RE' with £" a projection in
G&, and p ^ ) = Q£", i ϊ = J5"(JS + Q) = E' e &. Since

p{Ex)A: A e

Thus

As in the preceding paragraph we conclude H& = H&SA. By the
maximality of P, H = 0, hence E1 = 0, and i ? ^ = i ? ^ . Another
application of Lemma 2β5 completes the proof.

We note that the real ^-isomorphism p in Theorem 2.6 is charac-
terized by Lemma 2.1. Let U be a unitary operator. Let <?/ denote
the (abelian) von Neumann algebra generated by U. Then U has a
square root V in ^ cf, [2, proof of Lemma 2.6], Whenever we
write Um we shall mean a unitary operator V in <%f such that F 2 = U.
Thus Ϊ71/2 is not necessarily unique. The following application of
Theorem 2.6 will be of technical value. The second half of it was
pointed out to us by the referee, together with a purely analytic
proof not using Theorem 2.6. However, our proof is more in the
spirit of our treatment.

COROLLARY 2.7. Let U be a unitary operator, and let & denote
the self-adjoint weakly closed {abelian) real operator algebra gener-
ated by U. Let G be as in Theorem 2.6. The Ulβ can be chosen so
that GU112 e &\ Moreover, if —1 is not an eigenvalue of U({x : Ux =
-x} = {0}), then U112 e &.

Proof. GU = VR + p{V)Q with V a unitary operator in the von
Neumann algebra R& = R& + %R&. V has a square root V112 e
Let GU1'2 = V1I2R + p(Vll2)Q. Then Gί7 1 / 2 G^, and

(GU112)2 = VR + p(Vll2)2Q = GU.

The first assertion follows. If —1 is not an eigenvalue of U then in
the notation of Theorem 2.6, E = EU = EU112 since EU is self-adjoint.
Since F& is a von Neumann algebra, FU112 e F&, by the above
remarks. Thus Ulβ e &.

We shall need information on real algebras & such that &8A i s

abelian. The simplest such algebras were characterized in [8, Theorem
2.1]. The general ones are characterized by means of Theorem 2.6 and
the next result.

THEOREM 2.8. Let & be a self-adjoint weakly closed real oper-
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ator algebra such that &SA is abelian. Let & denote the von
Neumann algebra & + i&. Then there exist two central pro-
jections P and Q in & such that P + Q = I, P^ is abelian, Q^
is of type I2.

Proof. Let P be the central projection on the type I± portion of
&. Let Q — I — P. Assume there exist three orthogonal equivalent
nonzero projections Eu E2, and E3 in Q&. Let φ be an irreducible
representation of Q not annihilating the Eό. Then φ{&) is irreducible,
and φ(&)SA = φ{^SA) is abelian. By [8, Corollary 2.3] φ is a repre-
sentation on a Hubert space of dimension 2 or 1, contradicting the
existence of the Ejo Thus Q& is of type I2.

LEMMA 2.9. Let & be a self-adjoint weakly closed real operator
algebra. Let έ% = & + i^S, and, let c^ denote the center of ^ .
Then

( i ) <ar = ^f n & + %ct? n &.
(ii) If Q ̂ 0 is a projection in ^f such that

{0}, then Q^ Π & = {0}.

Proof. We may assume έ% n i& — {0}. By Lemma 2.2 every
operator in ̂  is of the form S + iT with S and T in &. Let i e ^ 1 ;
then AS + iAT = SA + iTA since S + iTe^. By the uniqueness
of the sum, AS = SA, TA - AT, so S,Te<έf n &. (i) follows.

In order to show (ii) Let G be a projection in Q& Π ̂ . Then
G ^ Q, hence Cβ(^) ^ Q and belongs to ^ by Lemma 2.3. Hence,
CG{^) G Q ^ n ( ^ ί l ^ ) - {0}, G = 0, (ii) follows.

We next improve Lemma 2.5.

LEMMA 2.10. Let & be a self-adjoint weakly closed real oper-
ator algebra. Let & — & + i&, and let W denote the center of
&. Then there exist three projections E, F, and G in <%? f] &SA
such that E + F + G — I and

( i ) E(& n ^) = E^SΛ.

(ii) F($f Π &) = F^, hence F& = F^.
(iii) There exist two projections Q and R in & such that

Q + R = G, Q.<S$ Π & = R& Π & = {0}, R& = R&, and there exists
a real ^-isomorphism of R& onto

Proof. By Lemma 2.9 and Theorem 2.6 there exist three pro-
jections E, F, G in <if Π ̂ SΛ such that E •,- F + G = J, 2?(<£f Π ̂ ) =
^ ^ 4 , F{& Π ̂ ) = i77^7, G ( ^ n *$?) = {Ai? + p(A)Q : Q, i? projections
in ^ , Q + i? = G, p is a real ^-isomorphism of Rc<^ onto Q ( ^ Π
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Moreover, Qίf n (<£f Π &) = {0}. By Lemma 2.9 Q ^ n ^ = {0}, and
similarly j β ^ Π ^ = {0}. By Theorem 2O6 J?^7 = i£(ίr n &). In
particular, ίi? e i?^?. Hence i?^? is a von Neumann algebra, since
%R belongs to the ideal R& n iiί^? in JK^. Thus R& = Έt&.
The same argument shows F έ% = F έ%. As in Lemma 2.5 there
exists a real ^-isomorphism of Rέ%? — R& onto Qέ%.

If 21 is a J}F-algebra a projection E in 21 is said to be abelian if
E%E is abelian. 21 is of type I if there exists an abelian projection
in 21 with central carrier I. The next result is a generalization of
[8, Theorem 8.2].

LEMMA 2.11. Let & be a self-adjoint weakly closed real algebra.
Let έ%? — & + i&. If &SA is a JW-algebra of type I then & is
a von Neumann algebra of type I.

Proof. Clearly E^8Λ, F^SΛ, Q^?SΛ, R^SΛ are all of type I,
E, F, Q, R being as in Lemma 2.10. Thus by Lemmas 2.10 and 2.1 we
may assume ίT Π &8A. = ^SA, a n d & ΓΊ i& = {0}. By [8, Theorem 8.2]
the von Neumann algebra &'U is of type /. Since <& Π &SA = ^SA
we may, cutting down by central projections in & if necessary, assume
^'U is homogeneous [1, p. 252]. We assume &'8'A = ^ ( g ) ^ ( ^ r ) , ^ 7

being an abelian von Neumann algebra acting on a Hubert space
and &(£ίf) denoting all bounded operators on the Hubert space
Since &'a'A c ^ , &' c &'BA = ^ ' Θ C, C denoting the operators of
the form λl, XeC, I being the identity operator on ^g^ Thus &' =
&®C,& being a von Neumann algebra acting on Sέ^&α^'.
Since the center of & equals that of &'a'A, the center of &' equals
^ (g) C. Thus ^ c &r c ^ ' . Hence ^ c ^ " c ^ ' . By [1, p. 26],

> c y =
Hence

= ^ ' (8) c.

In fact, by [1, p. 26], if C"e<gf' and C" (g) J e ^ ' ® ^ ( ^ T ) , the
matrix representation of C ' ® / is (Γίβ) with Γίβ = δlxC',δix being the
Kronecker symbol, and as an operator in £&' ® 3£{Sίf) its matrix
representation is (S,J with S?a; e ^ ' . Thus S^ = Tix, so Sί;c = 5 ίs C.
Thus C e ^ ' , C ® / G ̂ ' ® C.

In order to show ^ is of type I it thus suffices to show & ΐ\&f

SA

is of type I. Let ΰ e ^ Π ̂ ? L By Lemma 2.2 B = S + iT with
S,Te^£. As ^ n i ^ = {0}, the argument of Lemma 2.9 (i) shows
S, TG & n ^ ^ . In particular
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& Π &'SA = & Π &'SA + i& ίλ &'SA .

Now ( ^ Π ̂ L k * is abelian. By Theorem 2.8 & Π &'SA is of type
ί; the proof is complete.

LEMMA 2.12. Let & be a self-adjoint weakly closed real algebra.
Let &' = &-{- i&. Assume & has no type I portion. Then there
exists a unitary operator U in & such that U* = —U.

Proof. &SA has no type I portion, for if P is a central projection
in &8A s u c h that &SΛP is of type /, then by Lemma 2.3 P is central
in &. Since &P + i&P = ̂ P , &P is of type I by Lemma 2.11.
Thus P = 0. By the "halving lemma" then, [10, Theorem 17] there
exist two orthogonal projections E and F in &SA such that E + F = I,
and a self-adjoint unitary operator S in ^ ^ 4 such that E = SFS. Let
U — (E — F)S. Then U, being the product of two unitary operators
in ^?, is a unitary operator in ^ , and

[7* - ((E - F)S)* = SE - SF = FS - ES = -(E - F)S = -U .

3. Anti-automorphisms of order 2. We classify all anti-
automorphisms of order 2 of von Neumann algebras leaving the centers
elementwise fixed. Our first lemma is of general nature.

LEMMA 3.1. Let V be a conjugate linear isometry of a Hilbert
space §{f onto itself. Then V2 is a unitary operator. If & denotes
the self-adjoint weakly closed (abelian) real operator algebra generated
by V2, then VA = AV for all A in &.

Proof. Since V is a conjugate linear isometry of £ίf onto itself
V2 is a (complex) linear isometry of Sίf onto itself, hence is a unitary
operator. Clearly VV2 = V2V and VV~2 = V~*V. Since V~2 is unitary
and V~2V2 = J, V~2 = (V2)*. Since operators in & are weak limits
of real polynomials in V2 and (V2)*, V commutes with every operator
in &.

It was noted in [9, Lemma 3.2] that if 31 is a von Neumann
algebra, & a self-ad joint weakly closed real subalgebra of 21 such
that & + i& = §ί, έ&niέ& = {0}, then the map A + iB-+A* + iB*,
A, j ? e ^ , is an anti-automorphism of order 2 of 21. The next lemma
shows that all anti-automorphisms of order 2 are of this form.

LEMMA 3.2. Let 21 be a von Neumann algebra, and let Φ be a
^-anti-automorphism of order 2 of 21. Let & = {A e 21: Φ(A*) = A}.
Then & is a self-adjoint ultra-weakly closed real operator algebra,

= 2ί, & n i& = {0}, and φ(A + iB) - A* + iB*, A
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Proof. By [1, Theoreme 2, p. 56] φ is ultra-weakly continuous.
Clearly & is a self-adjoint real algebra, and is ultra-weakly closed.
Since every operator A in 31 is of the form

A = λ(A + φ(A*)) + ;[~JL-(A - φ(A*))]
2 \-2% J

with

and

-±r (A-φ(A*))e £?,% = &-

The rest of the proof is equally simple.
From now on the anti-automorphisms will leave the center element-

wise fixed. This is because of the next lemma.

LEMMA 3.3. Let 31 be a von Neumann algebra acting on a
Hilbert space έyϊf, and let φ be a ^-anti-automorphism of 31 of order
2 leaving the center of 31 elementwise fixed. Then

(i ) If E is a projection in 31 then E ~ φ{E).
(ii) If E' is a projection in 3ί' then the map AEr —> φ(A)Er is

a ^-anti-automorphism of 3LE" of order 2 leaving the center of 3IJ5"
elementwise fixed. It is denoted by φE,.

Proof. Let E be a projection in 31. Let F = φ(E). Then E =
φ(F). By the Comparison Theorem [1, Theoreme 1. p. 228] there exist
central projections P and Q in 31 such that P + Q = I, PF ^ PE,
QF ϊ5 QE. There exists a projection ^ ^ # in 31 such that PF ~ PE, ̂

Hence there exists a partial isometry F in 3ί such that V*V —
VV* = PE,. As P = φ(P),

PE=φ(PF) = φ(V*V) = φ(V)φ(V)* ~ φ(V)*φ(V)

= φ(VV*) = φ(PE,) £ φ(PE) = PF.

Thus PE^PF^ PE, so PE ~PF[l, Proposition 1, p. 226]. Similarly
QE - QF. E ~ F, and (i) is proved.

Let Ef be a projection in 31'. Let AeSI. Following [5] we define
CΛ to be the intersection of all central projections Q with the property
QA = A. Clearly CΛ = CφU). By [5, Lemma 3.1.1] AE' = 0 if and
only if CφU)CE, = CACE, = 0 if and only if φ{A)Er = 0. (ii) follows.

LEMMA 3.4. Lei 31 and φ be as in Lemma 3.3. Let ωx be a
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vector state on 21. Then there exists a unit vector y such that
ωxψ — (ύy on 2ί.

Proof. Let ω = ωxφ. Then ω is a normal state of 21. Let E
be the support of ωx in 21 [1, p. 61]. Let F = φ{E). By Lemma 3.3
E ~ F. Hence there exists a partial isometry V in 21 such that
E = V*V, F = VV*. Consider the state ωVx on 21.

ωVx{F) = ( F F * Vx, Vx) = (Ex, x) = 1 ,

so Fα € .F7. Moreover, if ωVx{S*S) = 0 for S e 21, then SVx = 0. Since
J57 is the support of a>e in 21, SVE = 0 = SFF. Hence Sî 7 = 0. Thus
F is the support of ωVx in 21, hence Vx is a separating vector for the
von Neumann algebra F%F. Since ω is a normal state of i^SIF, there
exists by [1, Theoreme 4, p. 233] a vector y in F such that α) — o)y.

LEMMA 3.5. Let 2ί and φ be as in Lemma 3.3. Let x be a
unit vector in £ίf. Assume [2Iίc] = I. Let y be the unit vector
constructed in Lemma 3.4. Then the making

(S + ίT)x-+(S - iT)y

where S, T e & — {Ae 21: φ(A*) — A}, is isometric, and extends to a
conjugate linear isometry V of §ϊf onto [21?/], such that for Ae'Ά,

φ(A) = V-'A* V .

Moreover, if 21' is finite then V maps £%f onto ̂ yΐf.

Proof. By Lemma 3.2 21 = & + i&. Let S, Te^>. Then
φ(S + %T) = S* + iT*, hence

|| (S + iΓ)a? ||2 - (OS + iΓ)*(S + iT)x, x)

= ((iS*S + r * 2 > , a?) + i((S*T - T*S)x, 05)

= ((S*S + T*T)y,y) + ί((S*T - T*S)y,y)

Since vectors of the form (S + iT)x are dense in Jĝ , the mapping
(S + iT)x—>(S — ίT)?/ extends by continuity to an isometry F of
onto [2ί?/]. Clearly F is real linear, and

V(i(S + iT))x = V(iS - T)x = (- T - iS)y = -iV(S + iT)x ,

so F is conjugate linear. If Ae &, S,Te &, then
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V~ιAV{S + iT)x = V-'AiS - iT)y

= V~\AS - iAT)y

= (AS + iAT)x

= A(S + iT)x .

By continuity and density, V~XAV = A for all A G ^ , i.e. φ(A) =
A* = V-'A* V for all A e ̂ . Thus φ(A) = V~ιA* V for all A e 31.

Since φ is of order 2, A = V~2AV2 for all Ae 21, hence V2A = AV2;
and F 2 e 21'. Moreover, V2 is an isometry of §ίf onto £7, the range
of V2. Thus £7, being a projection in 2Γ, is equivalent to /. Clearly
E ^ V(3ί?) = [21?/]. Since [Sty] e 2ί', [%] - J, as projections in 21'.
Consequently, if 21' is finite [21?/] = I. The proof is complete.

LEMMA 3.6. Let 21 and φ be as in Lemma 3.3. Suppose 2ί has
no portion of type III. Then there exists a conjugate linear isometry
V of Sίf onto itself such that

φ(A) = V-'A* V

for all A 6 SI.

Proof. Since 2ί has no portion of type III, neither does 2ί' [1,
Corollaire 3, p. 102]. Since every projection in 2Γ is a sum of finite
projections, [1, Corollaire 1, p. 244] and every projection is a sum of
cyclic projections, we may choose a family {xa}aej of unit vectors in
£ί? such that Σ α [2taα] = /, and [2taα]2I'[2taα] is finite. Let φ[Wίxa]
be the anti-automorphism of [2ίxα]2ί constructed in Lemma 3.3. Since
([WXaWY = [2ϊ^]2Γ[2Ia;α], [1, Proposition 1, p. 18] is finite, there exists
by Lemma 3.5 a conjugate linear isometry Va of [2ί#α] onto itself
such that

for each Ae [2Ixα]2t. Let V = Σ « ̂ « Then V is a conjugate linear

isometry of Sίf onto itself, and

Φ(A) =

β

= V~ιA*V.

The proof is complete.

THEOREM 3.7. Let 2ί be a von Neumann algebra acting on a
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Hilbert space ^f. Let φ be a ^-anti-automorphism of order 2 of 2ί
leaving the center elementwise fixed. Then there exist two orthogonal
projections P ' and Q' in 2Γ with P' + Qf = I, a conjugation J of the
Hilbert space P', a conjugate linear isometry J' of the Hilbert space
Q' such that Jn — — Q', such that

φ(A) = JA*J - JΆ*J' .

for all A in 21. Moreover, if 21 is of type III we may assume Qf = 0.

Proof. The two cases when 21 is of type III and 21 has no type
/// portion, may be treated separately. First assume 21 has no type
III portion. By Lemma 3.6 there exists a conjugate linear isometry
V of ^ T onto itself such that φ{A) = F ~ M . * F f o r i e 21. Since φ is
of order 2, V2 is a unitary operator in 2ί'. Let & denote the weakly
closed self-adjoint real algebra generated by F 2. Let

Q' = {xe^έf: V2x = -x} .

Then Qf is a spectral projection of F2, and by routine calculations
VQ' = Q'V, a fact which also follows from Theorem 2.6 and Lemma
3.1. Let Jr = VQ'. Then Jf is a conjugate linear isometry of Qf onto
itself such that J'2 - V2Qf = -Q'. Let Pf = I - Qf. Then P'e2Γ.
By Corollary 2.7 V~2P' has a square root W in &P'. Put J - TFVP\

Then since W, V, and Pf all commute, simple calculations give

y = j'Q' + ϊ7VP' - J'Q'

and

F-1 = -J'Q' +

Hence, V^A^V = -JΆ*Jf + JA*J. This completes the proof when
21 has no portion of type III.

Assume 21 is of type ///, hence 21' is of type III [1, Corollaire 3,
p. 102]. Thus for every projection Ef in 21', £"21 and E'WW are of
type III. Let Ef be a maximal projection in 21' such that φE, is
induced by a conjugation. If E' Φ I there exists a unit vector
xe I — E'. By Lemma 3.4 there exists a unit vector y in [2te] such
that ωβ + ω t f: ^ ~> Λ, ^ denoting the real algebra {A e 21: φ(A*) = A}.
Since ωx + α^ is normal, and every normal state of (I — JE")2I is a
vector state [1, Corollaire 9, p. 322], there exists a vector z<a[2te]
such that ωx + ωυ = ωz. Thus ωz:&-+R. Define J by J(S + iT)z =
(S — iT)z. As in Lemma 3.5 J is a conjugation of [2Iz] such that

JA*[%z]J = φ
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Since z Φ 0, [Άz] Φ 0, and the maximality of Ef is contradicted. Thus
E' = I, the proof is complete.

We are indebted to the referee for the proof of the nontype III part
of Theorem 3.7. Together with the remarks preceding Corollary 2.7 this
proof shows that the theorem can be proved without the use of the
structure theory in § 2. In addition to the type III algebras a great
many finite von Neumann algebras have every anti-automorphism like
φ in Theorem 3.7 induced by a conjugation.

THEOREM 3.8. Let % be a finite von Neumann algebra acting
on a Hilbert spaxe Sίf and having a separating and cyclic vector x.
If φ is a ^-anti-automorphism of 51 of order 2 leaving the center
of 21 elementwise fixed, then there exists a conjugation J of 3ίf
such that

φ(A) = JA*J

for all AeSL

Proof. As in Lemma 3.4 there exists a vector y in Sίf such that
ωx + ωy: & —> R, & denoting the real algebra {A e SI: φ(A*) = A}.
Since x is separating there exists a vector z Φ 0 such that ωx + ωy =
ωz on 2ί [l, Theoreme 4, p. 233]. If Aell and Az = 0 then

0 - ωz(A*A) > ωx(A*A) > 0 ,

so Ax = 0, hence A = 0. Thus z is separating for A. By [1, Corollaire,
p. 235] z is cyclic for §1. Define J by J(S + iT)z = (S - ίT)z, S,Teέg.
As in Lemma 3.5 J is a conjugation such that φ(A) = JA*J for all
A in St.

We next showτ that not every * -anti-automorphism of order 2
leaving the center elementwise fixed is induced by a conjugation.
For this purpose the next lemma is helpful.

LEMMA 3.9. // J' is a conjugate linear isometry of a Hilbert
space £%̂  such that Jn = —I, then there exists no conjugation J of

such that —JfAJr — JAJ for all operators Aa

Proof. Assume J exists. Then —JfAJr = JAJ, hence

A = -JfJAJJf = (%JfJ)A{iJJf) .

Note that iJJr is a unitary operator with inverse iJrJ. Thus

iJ'J = eiθl, 0 ^ θ < 2π ,

and
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J' = e^J, 0 < μ < 2π .
Thus

contrary to assumption.

E X A M P L E 3.10. Let M2 denote the 2 x 2 complex matrices con-

sidered as all bounded operators on C2. Let

Φ
'a 6Ί\ _ Γ d -b~

c d\ — c a

Then φ is a * -anti-automorphism of M, of order 2 leaving the center
fixed. Note that & = {AeM2:φ(A*) = A} is the quaternions. Let
J ' be the conjugate linear isometry of C2 defined by

Then J' 2 = - I , and 0(A) = -JΆ*J' for all Aeikf2. By Lemma 3.9
^ is not induced by a conjugation.

We are interested in knowing whether there exists a conjugation
/ such that e72IJ" = Si for a von Neumann algebra 2ί. An affirmative
solution of this problem would reduce the study of ^-anti-automorphisms
of 21 to that of *-automorphisms, since then a *-anti~automorphism can
be written in the form φ(A) = p(JA*J), where p is the * -automorphism
p(B) = φ(JB*J). For type I algebras the solution is a simple conse-
quence of the structure theory for such algebras.

LEMMA 3.11. Let 21 be a von Neumann algebra of type I acting
on a Hίlbert space 34f. Then there exists a conjugation J of £%f
such that /2IJ" = 21 and such that JA*J — A for all A in the center
o/2ί.

Proof. We first assume 21 is a maximal abelian von Neumann
algebra, i.e. 21 = 21'. If E is a projection in 2ί then (#21)' = EW =
E% when considered as acting on the Hubert space E, hence E% is
maximal abelian. By [1, Proposition 9, p. 98] there exists an orthogonal
family Ea of projections in 21 such that ΣEa = I and £7α2I is countably
decomposable. If we can find a conjugation Ja of Ea such that
JaEJΆJa = Ea% and JaEaA*Ja = EaA, then J = ^Ja has all the
required properties. We assume therefore that 2ΐ is countably decom-
posable. By [l, Corollaire, p. 233] 21 has a separating, and hence cyclic,
vector x. The identity map of 21 onto itself is a ^-anti-automorphism
of order 2 leaving the center elementwise fixed. Hence an application
of Theorem 3.8 completes the proof when 21 is a maximal abelian von
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Neumann algebra.
We next assume 21 is an abelian von Neumann algebra. Then 2Γ

is of type I. Hence by [l, Proposition 2, p. 252] there exist central
orthogonal projections Pn in 21' for each cardinal n, so Pn e 21, such
that PnW is homogeneous of type In or Pn = 0, and Σ»£i Pn = I. As
remarked above we can restrict our attention to the case when 2ί' is
homogeneous. We assume therefore 21' = ^ (g)&(£gQ, where <& is
an abelian von Neumann algebra acting on a Hubert space Sίf^ &(3ίf^)
denoting all bounded operators on the Hubert space 3ίfΔ. Since 21 =
21" = <af' 0 C is abelian, 21 c 21', hence <af' c if. Thus <Sf is maximal
abelian, and 21 = ^ 0 C By the above paragraph there exists a
conjugation Ji of # ^ such that A = J1A^J1 for all A e if. Let J2

be any conjugation of ^ ^ . Then J = Ji 0 /2 is a conjugation of
<%̂  = <^i 0 <%1 such that / £ * J = 5 for all £ in 21.

In the general case we may by the same argument as above
assume 21 is homogeneous, so of the form 21 = % 0 &(3ίΓ^ with g
an abelian von Neumann algebra acting on the Hubert space J^l.
By the above paragraph there exists a conjugation J1 of 3ίΓ^ such
that JγA*Jλ = A for all A e g. Let J2 be any conjugation of ^ίΓ2.
Since the center of 21 equals g 0 C the conjugation J = Jx 0 J2 has
all the required properties. The proof is complete.

The truth of the above lemma without the type I assumption is a
deep open problem. We can show that the existence of an anti-automor-
phism as in Theorem 3.7 implies an affirmative solution.

THEOREM 3.12. Let % be a von Neumann algebra acting on a
Hubert space 3ίf. Suppose there exists a ^-anti-automorphism φ of
21 of order 2 leaving the center elementwise fixed. Then there exists
a conjugation J of <^f such that J2IJ = SI and such that JA*J — A
for all A in the center of 21. Moreover, if 21 has no type I portion,
and & - {A G 21: ψ(A*) - A} then J&J = ^ .

Proof. By Theorem 3.7 we may assume there exists a conjugate
linear isometry J ' of £έ? such that φ(A) = -JΆ*Jr, and J' 2 = -1.
By Lemma 3.11 we may assume 21 has no portion of type J. By
Lemma 2.12 there exists a unitary operator U in & such that Ϊ7* =
— U. Let J = UJ'. Then J" is a conjugate linear isometry of
onto itself, and since

J'U - J'φ{U*) = -J'Φ(U) = -J\-J'U*J') - UJ', J* = I,

hence J is a conjugation. If A e & then

JAJ = UJrAJfU = U*φ(A*)U = U*AU e &! ,
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so J leaves & invariant, hence 2ί invariant. Finally, if A belongs
to the center of 21, then JA*J = WAV = A.

4* Inner anti-automorphisms• In the last section anti-automor-
phisms of order 2 leaving the center elementwise fixed were analysed.
One obviously wants to delete the assumption that anti-automorphisms
be of order 2. In the present section we shall do this for the anti-
automorphisms which are the analogue of inner automorphisms, and
show these anti-automorphisms are compositions of inner automorphisms
and anti-automorphisms induced by conjugations.

LEMMA 4.1. Let % be a von Neumann algebra acting on a Hilbert
space 3ίf. Suppose V is a conjugate linear isometry of έ%f onto
itself such that F^SIF = 21. Let U = V\ and assume X~^X = 21
for all square roots X of U in the von Neumann algebra £$
generated by U. Then there exists a square root U1'2 of U in έ$
such that if W = VU~112 then WA = I and W~'%W = 21.

Proof. Let & denote the self-adjoint weakly closed real algebra
generated by U. By Lemma 3.1 AV = VA for all A in ^g5. By
Theorem 2.6 there exist three orthogonal projections E, F, and G in
& such that E& = E<^SΛ, F& = F&, note & = & + i ^ , and
G& = {AR + ρ(A)Q : A e &r p being a real ^isomorphism of &R
onto &Q, R and Q are orthogonal projections in & such that
R + Q = G}. Now iFe F&, hence

(iF)V = V(iF) = -iVF = -iFV,

so F = 0. By Corollary 2.7 we can choose a square root U1'2 of U in
& such that GUmeG&, so commutes with V. EU is self-ad joint
so equal to P1 — Q19 where Px and Q1 are orthogonal projections in
& with sum E. Since we may assume

EU112 = E{Pλ + iQJ, EVU1'2 =E(P1 - iQJV = EU~1I2V.

Let W = VU-112. Then by hypothesis W~'%W = 21, and

W2 =

- V(EU~1I2V + GU~1I2V)U-112

= V(VEU112 + VGU~1I2)U-112

= V*(E + GU-1)

= UE+G .

Therefore, W* = (UE + G)2 = (P1 - Q,)2 + G = Px + Qi + G = /. The
proof is complete.
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LEMMA 4.2. Let % be a von Neumann algebra with no type I
portion acting on a Hubert space 3ίf. Let V be a conjugate linear
isometry of β^ onto itself such that V~ι%V = 21 and F 2e2I. Then
there exists a unitary operator U in 21 and a conjugation J of 3ίf
such that V = JU and such that J2IJ" = 21.

Proof. V satisfies the conditions of Lemma 4.1, hence- V = WUl}2

where U, = V2 e 21, WA = I, and W~1($ίW = 21. Let S denote the self-
adjoint unitary operator W2. From the proof of Lemma 4.1 S e 2ί.
Let E and F be projections in 21 such that E + F = I, E - F = S.
Let^ = {AeWi:SAS = A}. Then & = E%E + F%F. Moreover, the

Γanti-automorphism ψ defined by φ(A) = W"1A*W leaves έ%? invariant.
""in fact, if A e . ^ then S(W~1AW)S = W-\W~2AW2)W = W^AW,

hence ψ-'AWe &. Since W~2AW2 = SAS - A for Ae &, φ induces
an anti-automorphism of order 2 of <3&. By Lemma 3.2 έ% — & + i&,
where ^ = { i e ^ : W^AW = A} = {Ae.^:AW = WA} is a self-
adjoint weakly closed real algebra satisfying & Π i& — {0}. Since
& = E%E + FWLF with E and F in 21, & has no type I portion.
Hence by Lemma 2.12 there exists a unitary operator U2 in & such
that Ό? = - U2. Then Ul'2 = 2~ll\I + U2) e &, and both U2 and C/2

1/2

commute with W. Let Wx = WU2

1'2. Then Wl = WUII2WU$'2 = SU2e%,
and ΐ^f2 = SU2* = -SU2= -Wΐ. As for Ϊ72, (Wi)112 belongs to the
self-ad joint real algebra generated by W*. Moreover, 21 = W
Let J = W^W})-1'*. Then 2ί - J - W , and

since Ŵ  commutes with (TΓi2)"1/2. Thus J is a conjugation, J = J~\
and J2ίJ = 21.

Finally, if U3 = JW then a straightforward computation shows
U3 = (I + £72)(S - ?72) e 21. Let Z7 = ^ s ^ 2 . Then Ϊ7 e 2ί, and F =

= JUJJl1* = JU. The proof is complete.

Let 21 be a von Neumann algebra acting on a Hubert space
Then an inner ^-automorphism of 2ί is one of the form A~-+U~ιAU,
where U is a unitary operator in St. Clearly such an automorphism
leaves the center elementwise fixed. If φ is a *-anti-automorphism of
2ί we say φ is inner if φ leaves the center of 2ί elementwise fixed
and if there exists a conjugate linear isometry V of § onto itself
such that V2 e 31 and φ(A) = V-'A* V for all A e 31. If U is a unitary
operator in 31, and J" is a conjugation of Sίf such that JA*J = A
for all A in the center of 31 and J3IJ" = Si, then clearly the ^-anti-
automorphism A-+U~1JA*JU of 31 is inner. We shall see that every
inner *-anti-automorphism is of this form. In the type I case every
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^-automorphism of SI leaving the center elementwise fixed is inner.
The analogous result holds for *-anti-automorphisms.

LEMMA 4.3. Let 31 be a von Neumann algebra of type I acting
on a Hilbert space £(?. Let φ be a ^-anti-automorphism of 31 leaving
the center elementwise fixed. Then there exist a conjugation J of
έ%f such that J3IJ = SI and such that JA*J = A for all A in the
center of SI, and a unitary operator U in SI, such that

φ(A) = U

for all A in 31. In particular, ψ is inner.

Proof. By Lemma 3.11 there exists a conjugation J of ^f with
the stated properties. The map A —» φ(JA*J) is a * -automorphism of
SI leaving the center elementwise fixed, hence is inner [l, Corollaire,
p. 256], Let U be a unitary operator in 21 such that φ(JA*J) = U~ιAU
for Ae 31. Then φ(A) = φ(J(JAJ)J) = U~\JAJyU = U~ιJA*JU.

THEOREM 4.4. Let 31 be a von Neumann algebra acting on a
Hilbert space £ίf. Let φ be an inner -^-anti-automorphism of 31.
Then there exist a conjugation J of 3ίf such that J3I/ = 31 and
such that JA*J — A for all A in the center of 31, and a unitary
operator U in SI, such that

φ(A) = U-'JA^JU

for all A in 31.

Proof. The type I portion is taken care of by Lemma 4.3. We
may thus assume 31 has no type I portion. By assumption φ{A) =
V~XA*V for all A in 31, where V is a conjugate linear isornetry of
έ%f such that V2 e SI. By Lemma 4.2 there exists a unitary operator
U in 31 and a conjugation J of £ίf such that J3IJ=SI, and V = JU.
Thus φ{A) = U-'JA^JU. If A is in the center of 31 then A =
UAU-1 = UφiA)!!-1 = JA*J. The proof is complete.

An examination of the proof of Theorem 4.4 shows that in order
to find a conjugation J such that J2IJ — 31, we used the innerness
of φ mainly because we cannot in general conclude that if U is a
unitary operator such that U~19ίU = $ί, then U~1I2WίU112 = 31 for some
square root of U in the von Neumann algebra generated by U. This
is a bit surprising, for if T is a positive invertible operator such
that Γ-1SΪΓ = 3t, then by a theorem of Gardner [3, Theorem 3.5]
T-1/23IT1/2

 = 5j# I n f a c t ) j e t M2 b e t h e complex 2x2 matrices acting
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on C\ and let C2 be the scalar operators in M2. Let SI = M2 0 C2.
Let El9 E2, Fl9 and F2 be 1-dimensional projections in M2 such that
Ex + E2 = F, + F2 = I. Let S1 = E1- E2j Si = F1- F2 be self-adjoint
unitary operators in M2. Let S = St 0 S2. Then S is a self-ad joint
unitary operator in M2 0 Λf2, and the map

is an automorphism of order 2 of SI. We show S~1/23IS1/2 Φ SI. Indeed
S = E - F, where E = E^ F, + E2® F2, F = E^ F2 + E2(g) Flm S
has two square roots, namely E ± ii*7. A straightforward computation
yields S~ιι\A 0 I)£1 / 2 = (J^AE^ + J572A£72) 0 1 ± i{ExAE2 - E2AE,) 0 S2.
Since the second term need not be in 31, S-1/23IS1/2 Φ 31.

We conclude this section with a result which combines the results
in § 3 with Theorem 4.4. For simplicity we state the theorem for
factors.

THEOREM 4.5. Let % be a factor acting on a Hubert space 3ίf.
Then the following four conditions are equivalent.

(i ) There exists an inner ^-anti-automorphism of 31.
(ii) There exists a conjugation J of Sίf such that JSIJ = SI.
(iii) There exists a self-adjoint weakly closed real algebra &

such that & Π i& = {0}, and SI = & + i&.
(iv) There exists a ^-anti-automorphism of order 2 of 31.

Proof. By Theorem 4.4 (i) and (ii) are equivalent. By Lemma 3.2
(ii) implies (iii). Assume (iii). Then the mapping A + iB—+ A* + iB*
with A,Be% is a *-anti-automorphism of 31 of order 2 [9, Lemma
3.2], By Theorem 3.12 (iv) implies (ii).

5* Automorphisms of order 2* One of the key points of the
proof of Theorem 4.4 was that & had no type I portion if SI had
none. In the proof we used that the self-ad joint unitary operator S,
for which <^f was the fixed point set, belonged to SI. In general it
is unnecessary to assume S e 31. As this result is closely related to
Lemma 2.11 we include a proof.

LEMMA 5.1. Let 31 be a C*-algebra. Let ψ be a ̂ -automorphism
of order two of 31. Let & = {A e SI: ψ(A) = A}. Then & is a
C*-algebra. If & is abelian then every irreducible representation
of 31 is on a Hilbert space of dimension at most 2.

Proof. Clearly & is a C*-algebra. Let <if = {A e 31: - A = ψ(A)}.
Then & n ^ = {0}, and 31 = & + ίT. In fact, the latter equality
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follows since if Ae2I then

A = i-(A + ψ(A)) + 1 ( A - ψ(A)) ,
Δ Δ

where the first term is in & and the second in ^ . Note that if
J5, Ce <if then BCe^ since ^(BC) = ψ(B)ψ(C) = (-B)(-C) = BC.
By hypothesis & is abelian. Let φ be an irreducible representation
of 21. Then φ(&) is an abelian C*-algebra, hence isomorphic to some
C(X). Assume X contains more than two points. Then there exist
three positive operators Fl9 F29 and Fz in φ{0) and orthogonal unit
vectors xl9 x2, and x3 in 3Γ- the Hubert space on which φ represents
§1- such that Fάxk — djkxk. By [4, Theorem 1 and Lemma 5] there
exists a unitary operator U in §1 such that φ(U)x1 = x29 φ(U)x2 = α?s.
By the above U = A + B with Ae^, Berέf. As

I = 17*17 = (AM + -B*£) + (A*£ + B*A) ,

and the first term is in & and the second in ^ , I = A*A + 5*5.
In particular, | | j?| | ^ 1, hence 11^(5)^11 ^ 1. Now

τ1 ? x2) = (^(ίJ)^, x2) - (φ(A)xl9 x2)

1x,1 x2)

= 1 .

Thus 1 = (φ{B)xlf x2) ^ \\φ{B)xι II I! x2 II ^ 1, so that
Similarly φ(B)x2 = ίc3. Thus

2 ) ^ = φ{B)φ{B)xL = φ{B)x2 = £3 .

But B*e&, hence

Xi = F,x3 = 0 ,

a contradiction. Thus X contains at most two points. Assume
dim ^ * ^ 3. Let xl9 x2, x3 be three orthogonal unit vectors in 5ίΓ.
If φ(&) = CI, we can find as above B in ^ such that φ(B)x1 =
a;2, φ(B)x2 = x^ hence φ(B2)x1 — x3β But B2 — al with aeC, hence
φ(B2)x1 = axu a contradiction. If X is a two point space φ{&) —
{aE + bF: α, be C, E and F orthogonal projections in φ(&) with
E + F = I}. We may assume dim F ^ 2, xLe E, x2x3 e F. Then
J3 can be chosen as above, hence x3 = φ(B2)x1 = φ(BnήEx1 = E' φ(B2)x1 =
Ex3 = 0, a contradiction. Thus dim 3ίΓ ^ 2.

THEOREM 5.2. Lei 21 be a von Neumann algebra acting on a
Hubert space 3ίf. Let ψ be a ^-automorphism of order two of 21
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Let & — {A e Si : ψ(A) = A}. If έ%? is a von Neumann algebra of
type I then so is 3ί.

Proof. Clearly ^ is a von Neumann algebra. Let P be the
central projection on the type I portion of St. Then P is invariant
under φ, hence Pe &% Assume P φ I. Then §1(1 — P) has no type
I portion while &(I — P) is of type I. Let E be a nonzero abelian
projection in &{I — P). Then A-+ Ef(A)E is an automorphism of
E%E leaving operators in E^E elementwise fixed. Moreover
is abelian. By Lemma 5.1 every irreducible representation of
is on a Hubert space of dimension at most 2. Thus E%E is of type
I (cf. argument in proof of Theorem 2.8), contradicting the fact that
21(1 — P) has no type / portion. Thus P = /, 21 is of type I.

The author wants to thank E. Effros and R. Kadison for many
stimulating conversations on the subject, and to thank the referee for
many valuable suggestions.
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