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Two types of =-anti-automorphisms of a ven Neumann
algebra % acting on a Hilbert space 27 leaving the center
of U elementwise fixed are discussed, those of order two and
those of the form A — V7 1A*V,V being a conjugate linear
isometry of 57 onto itself such that V2e?, The latter anti-
automorphisms are called inner, and are the composition of
inner :-automorphisms and =-anti-automerphisms of the form
A— JA*J, where J is a conjugation, i.e, a conjugate linear
isometry of 57 onto itself such that J?= 1. The former
anti-automorphisms are also closely related to conjugations;
they are almost, and in many cases exactly of the form A —
JA*J. Moreover, the existence of =x-anti-automerphisms of
order two leaving the center fixed implies the existence of a
conjugation J such that JUJ =%, and such that JA*J = A4
for all A in the center of ¥,

There are two main problems concerning x-anti-automorphisms of
von Neumann algebras, namely their existence and their description.
In the present paper we shall deal with the latter question. It turns
out that anti-automorphisms are closely associated with conjugations,
a conjugation being a conjugate linear isometry of a Hilbert space
onto itself whose square is the identity. This is not surprising, as
such maps induce most of the important anti-isomorphisms of von
Neumann algebras, c¢f. [1]. We shall characterize two classes of anti-
automorphisms, namely those of order two leaving the center of the
von Neumann algebra elementwise fixed, and the so-called inner anti-
automorphisms, both characterizations being in terms of conjugations.
In the process of doing so we shall make heavy use of Jordan and
real operator algebra theory, as developed in [8], [9], and [10]. The
second section is devoted to this theory; we shall generalize some of
the results in [8] and [9], and in particular classify all weakly closed
self-adjoint real abelian operator algebras.

We refer the reader to [1] for terminology and results concerning
von Neumann algebras. If <#Z is a family of operators on a Hilbert
space we denote by .Z#, the set of self-adjoint operators in .=z We
say Z# is self-adjoint if A*e 22 whenever Ae .22 F# is a self-
adjoint real operator algebra if # is a self-adjoint family of operators
which form an algebra over the real numbers. By a JW-algebra we
shall mean a weakly closed real linear family of self-adjoint operators
closed under squaring. By a real *-isomorphism of one self-adjoint
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real algebra into another we shall mean a one-to-one real linear map
¢ such that ¢(A4*) = ¢(A)*, and ¢(AB) = ¢(A)¢(B) for all A, B in the
algebra. By a x-anti-automorphism (or just anti-automorphism) of a
von Neumann algebra 2 we shall mean a one-to-one (complex) linear map
¢ of A onto itself such that ¢(A*) = ¢(A)* and ¢(AB) = ¢(B)¢(A) for
all A, Be%A. We note that such a map is ultra-weakly continuous
[1, Corollaire 1, p. 57]. We shall identify projections and their ranges.
If oA is a family of operators and . is a set of vectors we write
[2A_#] for the subspace generated by all vectors of the form Ax with
AecU and ze ~Z.

The *-anti-automorphisms ¢ studied in this paper will all turn out
to be spatial, i.e. there exists a conjugate linear isometry ¥V of the
Hilbert space 57 such that ¢(A) = V'A*V. That any such map ¢
is a x-anti-automorphism of <Z(5#°)—the bounded linear operators on
57 —Iis seen as follows. By polarization (Vz, Vy) = (z, y) for all
x, ye o7, Hence

(V=AY =, y) = (3, V7AVY) = (Va, AVy) = (VA% Vo, y)

for all ,y, and (V'AV)* = V'A*V for all Ae &#(2#). Clearly ¢
is linear and anti-isomorphic. If (e,).e; is an orthonormal basis for
57 then the map J: >\ N\.e,— >, N\.6. is a conjugation of .5#, hence
there exist *-anti-automorphisms of factors of type I. The problem
is open for general nontype I factors; however, it is known to the
affirmative in constructed examples, a few examples will show how.

Let G be a countable discrete group such that the set {gg,g~":
g € G} is infinite for every g, = ¢. Let 2 be the usual Hilbert algebra
of complex functions x on G having finite support, where multiplication
is convolution, z*(g) = x(¢g™*), and

(%, y) = }; z(9)¥(9) ,

[1, pp. 301-303]. For xe I*(G) set Ja(g) = Z(g9). Then J is a conju-
gation. Let A(G) be the II, factor of all left multiplications L, by
bounded dements of [*(G). Then simple calculations show

(i) o bounded implies Jx bounded.

(ii) JL,J = L,, for all bounded =z.
Thus JAG)J = A(G), and ¢(A) = JA*J is a x-anti-automorphism of
A(G) of order 2.

By specializing G, one can get (G) to be any one of the three
known II, factors on a separable 27 see [6].

In the notation of [7, p. 112] one can define a conjugation J by

JF(v, ©) = F(v, @) .
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Then JU, J = U,, and JL4J = Lz. So J induces a s-anti-automorphism
of order 2 of the type III factor obtained in that construction.

2. Real operator algebras. We begin this section with four
lemmas all of which are practically known.

LEMMA 2.1, Let U, and U, be C*-algebras with identities I; let
o be a real «-isomorphism of U, into WA, such that o(I) = 1. Then there
exist two orthogonal central projections K and F in A, with K+ F = 1,
such that Ep is complex linear and Fpo is complex conjugate linear.

Proof. Let A = p(¢I). Then A = p(iI)* = o((tI1)*) = p(—I) = — L
Thus 4 =7FE —4F with E and F' as above. Clearly Ep is linear and
Fo is conjugate linear.

The next lemma is a slight generalization of [9, Theorem 2.4].
The proof is practically the same as that in [9], and is omitted.

LeMMA 2.2, Let .22 be a self-adjoint weakly closed real operator
algebra. Then B + 1.5 is a von Neumann algebra.

If A is a JW-algebra or a von Neumann algebra and E is a pro-
jection in ¥ then its central carrier with respect to U is the smallest
central projection in U greater than or equal to E. It is denoted by
Cp(A). The next lemma is a modification of [8, Lemma 8.1].

LEMMA 2.3. Let & be a self-adjoint weakly closed real operator
algebra. Let FE be a projection in G2 Then Cy(FHy,) = Cp(FB + 1.72).

Proof. Let < denote the von Neumann algebra .% -+ 1.2 (Lemma
2.2). In view of [8, Lemma 8.1] it suffices to show Cy(FHs,) = [ Fsi L]
belongs to <z’. Let xec K, Ae. s, Be.Z2. Then

BAwx = (BAE + EAB*)x — EAB*vc[ o]V E < | #.E] .

Thus B leaves |.&%,F]| invariant, hence <7 leaves |27,/ | invariant,
hence [, Ele <7’ .

The proof of the next lemma is a modification of that of a similar
result in the proof of [9, Theorem 6.4].

LEMMA 2.4, Let &2 be a self-adjoint weakly closed real operator
algebra. Let & denote the center of the von Neumann algebra <7 =
R + 1.F. Assume Eg,#+ & Fss. Then there exists a projection
E +#0 in & such that E<Z N <2 = {0}.
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Proof. Let E, be a nonzero projection in & which is not in .&#,.
Let F, be the smallest central projection in <, such that F, = E.
Then F,+# E,. FE.<# is an ideal in <Z, hence K, <#Z N %, is a weakly
closed Jordan ideal in the JW-algebra .<#;,. Hence there exists a
central projection F, in #y, such that K,.% = &g, N F,Hs, [10].
Then F, < E,, hence F,< E,. Let F;=F,— F,. Then F,+ 0 and belongs
to &N .F, (Lemma 2.3). Let E=EF,=FE, — F,. Then E =+ 0 and
belongs to 2>, Moreover E<Z is an ideal in <2 As before there exists
a central projection F, in %, such that E<z N g, = F,.“#;,. Then
F,<EZLVF, Since E<E, EZ N He,FA, hence F, < F,. But
F.F,=0, so F,=0. Thus EZ N FHsyu ={0}. Let Ac EcZ N A.
Then A*Ac Bz N Hyy = {0}, s0 A =0, E<Z N <% = {0}.

LEMMmA 2,5, Let 2 be a self-adjoint weakly closed real operator
algebra. Let & = A + 1% and & be the center of <& Then
there exist three orthogonal projections P, Q, R in % such that
P+ Q-+ R=1and such that,

(i) P&sy = P& N Fysae

(ii) QFNFH =Rz N# = {0}.

(iiiy R%s4s = RZ N RHq,.

Moreover, the map R#Z — QF by RA— QA with Ac ZZ is a real
*-isomorphism onto.

Proof. We may assume % N 1% = {0}. Let P be the largest
projection in & such that P&y, = P& N FHgs. Assume P # I, so
Egs #* E N FHsy. From Lemma 2.4 we can choose a projection @ <
I — P in &, maximal with respect to the property Q<% N FHy, = {0}.
Iet R=1— P — Q. Then R N FHs, = {0}, for if not, let £ be a
projection in & with E< R. By Lemma 2.3 Cu(<#;,)c<, and
Co(FHs) < R since E< R. We may assume Fec%. By maximality
of P,EZs, + &z N Hg,. By Lemma 2.4 there exists F = 0 in
&, F < F, such that F.<Z N.<Z = {0}. Then (Q + F)&# N FHs, = {0}, for
if Ae(@ + F)Z N “Hs, then A = AQ + AF. Then AF = AEe¢ #y,,
hence AF = 0. Therefore

contradicting the maximality of Q. Thus F = 0, hence E = 0, hence
R<z N &5, = {0}. As in the proof of Lemma 2.4

QRFZ NA =Rz NAZ ={0}.

Assume R% N RHy, + R&s,. Then Lemma 2.4 yields the ex-
istence of a projection F' 0 in R such that F.ezZ N R<Z = {0}.
Then (F +Q)# N.# ={0}, for if Aec(F + Q) <F N<# then A=
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AF + AQe . Hence RA=FAcF<Z NNRZ ={0}, so FA=0.
Thus 4 =4QecQz N<# = {0}, A=0. Thus (F + Q<% N Z = {0},
contradiction the maximality of Q. Thus R% N RHs, = R&%,.

Finally let o denote the map R — Q<2 defined by RA-— QA,
Ae 2. Then p is a real x-isomorphism onto. In fact, QA = 0 with
Ae(I — P)=2 if and only if A = RAce RZ N <2 = {0} if and only if
A =0, and by the same argument, if and only if RA =0. Thus p
is well defined. It is then clear that p is a real %-isomorphism onto.
The proof is complete.

We are now in the position to classify all self-adjoint weakly
closed abelian real operator algebras. If X is a compact Hausdorft
space we denote by C(X) (resp. Cr(X)) the complex (resp. real)
continuous function on X.

THEOREM 2.6. Let 2 be a self-adjoint weakly closed abelian
real operator algebra. Let <7 denote the (abelian) von Neumann
algebra # + 1.8. Then there exist three orthogonal projections E,
Fand G in # such that E+ F + G = I, and such that

(1) E® = Kz,

(ii) F# = FZ

(i) GZ ={AR + p(A)Q: E and Q are projections in <& such
that R+ Q = G, Ae R<Z, p is a real «-isomorphism of R<Z onto Q. F#}.

Proof. Let P, @, and R be the projections found in Lemma 2.5,
We first consider P<#. Since P<Zy, = P<Z N gy, P & and
P%SA"{_?:P%SA:PL@-

Let & = P2 NiP<. Then 7 is a weakly closed ideal in <7,
hence there exists a projection F' in <& such that Fleg = 9 = F.22,
so Feep., et E=P — F. Then Fe® EZ NiE% = {0}. By
spectral theory we may assume K<z = C(X). Since

E%SA + 'iE%SA = Kz = C(X) y

an application of the Stone-Weierstrass Theorem shows E<Z, = Cr(X).
Since EZ N 1B = {0}, EsZ = Ci(X) = E<Zy,, (i) and (ii) are taken
care of.

Let G=I— P. Then Ge &%, G = + R. By Lemma 2.5

RV@SA + iRk%sA == R.@ .

By the argument in the preceding paragraph there exist two pro-
jections K, and F, in R<Z such that

El_}_Fl:RyEl%:ElgSAyFI%:Flg-
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Let p be the real x-isomorphism of R<Z onto Q<% defined in Lemma
2,5, Let H=E, + p(F,). Since E, = RE’ with E’ a projection in
G2, and o(F) = QE',H = E'(R + Q) = E' ¢ &%, Since

E.% = E. Py, = B Py, HF = (BA + o(BE)A: Ae Py} = Hop,, .
Thus
H(ZPgq + 1954 = H(FB +1.R) = HZ = H(Fsy + 1. Fsa) -

As in the preceding paragraph we conclude Hep = H<s,. By the
maximality of P, H =0, hence K, =0, and R<%? = R<Z. Another
application of Lemma 2.5 completes the proof.

We note that the real x-isomorphism p in Theorem 2.6 is charac-
terized by Lemma 2.1, Let U be a unitary operator. Let % denote
the (abelian) von Neumann algebra generated by U. Then U has a
square root V in Z; cf, [2, proof of Lemma 2.6]. Whenever we
write UY* we ghall mean a unitary operator V in % such that V= U.
Thus UY? is not necessarily unique. The following application of
Theorem 2.6 will be of technical value., The second half of it was
pointed out to us by the referee, together with a purely analytic
proof not using Theorem 2.6, However, our proof is more in the
spirit of our treatment.

COROLLARY 2.7. Let U be a unitary operator, and let <& denote
the self-adjoint weakly closed (abelian) real operator algebra gener-
ated by U. Let G be as in Theorem 2.6. The U can be chosen so
that GU" e 2. Moreover, if —1 is not an eigenvalue of U({x: Ux =
—z} = {0}), then U e .22,

Proof. GU = VR + p(V)Q with V a unitary operator in the von
Neumann algebra R<z — RZ + iRS%. V has a square root V'* ¢ R<%.
Let GU" = V'*R + p(V'™®Q. Then GU'*¢ &, and

(GU™Y = VR + o(VF)Q = GU .

The first assertion follows. If —1 is not an eigenvalue of U then in
the notation of Theorem 2.6, £ = EU = EU'* since EU is self-adjoint.
Since F'<# is a von Neumann algebra, FU' e F.2#, by the above
remarks. Thus U'*e <.

We shall need information on real algebras <2 such that %, is
abelian. The simplest such algebras were characterized in [8, Theorem
2.1]. The general ones are characterized by means of Theorem 2.6 and
the next result.

THEOREM 2.8. Let ZZ be a self-adjoint weakly closed real oper-



ANTI-AUTOMORPHISMS OF VON NEUMANN ALGEBRAS 355

ator algebra such that FHs, is abelian. Let <& denote the wvon
Neumann algebra FH + 12. Then there exist two central pro-
jections P and Q im <& such that P+ Q = I, P<Z s abelian, Q<F
s of type I,

Proof. Let P be the central projection on the type I, portion of
. Let Q =1— P. Assume there exist three orthogonal equivalent
nonzero projections E,, E,, and E, in Q<Z. Let ¢ be an irreducible
representation of @ not annihilating the E;. Then ¢(<2) is irreducible,
and @(F#)gs = p(Hsy) is abelian. By [8, Corollary 2.3] ¢ is a repre-
sentation on a Hilbert space of dimension 2 or 1, contradicting the
existence of the E;. Thus Q<# is of type L.

LeMMA 2.9, Let &2 be a self-adjoint weakly closed real operator
algebra. Let &% = % + 1., and let & denote the center of 7.
Then

(1) €= NZF +1i15 N A

(ii) If @0 is a projection tn & such that Q& N(& N.FH) =
{0}, then Q=z N # = {0}.

Proof. We may assume # N1% = {0}. By Lemma 2.2 every
operator in & is of the form S + 47 with S and T in 2. Let Ae ZZ;
then AS + 1AT = SA + ¢TA since S +1Te%. By the uniqueness
of the sum, AS = SA, TA = AT, so S, Tew N #. (i) follows.

In order to show (ii) Let G be a projection in Q<% N <. Then
G £ Q, hence Cy(7) < @ and belongs to <% by Lemma 2.3. Hence,
CZ)eQz N (& N.Z)=1{0}, G =0, (ii) follows.

We next improve Lemma 2.5.

LEMMA 2.10. Let & be a self-adjoint weakly closed real oper-
ator algebra. Let <7 = B + 1.2, and let & denote the center of
. Then there exist three projections K, F, and G in & N Fgy
such that £+ F + G = I and

(1) E(gﬂ%) :E%7SA.

(i) F(z N L) =F%, hence F# = F<7.

(iii) There ewist two projections € and R in ¥ such that
Q+R=G,QzNFH =RzNFP = {0}, Rz = R, and there exists
a real x-tsomorphism of R<Z onto Q2.

Proof. By Lemma 2.9 and Theorem 2.6 there exist three pro-
jections E, F,G in & N ., such that £ - F + G = I, BE(zz N &#) =
EGs, Fle N #)=Fz, G N #)={AR + p(4)Q : Q, R projections
in €,Q+ R =G, o is a real x-isomorphism of Rz onto Q(& N #)}.
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Moreover, Q% N (z N &%) = {0}. By Lemma 2.9 Q<% N = {0}, and
similarly R<Z N < = {0}. By Theorem 2.6 Rz = R(# N .#). In
particular, iRe R<?. Hence R<? is a von Neumann algebra, since
1R belongs to the ideal R#Z NiR<# in R<Z. Thus R = RZ.
The same argument shows F.<Z = F'<®. As in Lemma 2.5 there
exists a real x-isomorphism of R<# = R onto Q..

If oA is a JW-algebra a projection E in 2 is said to be abelian if
EUE is abelian. 2 is of type I if there exists an abelian projection
in A with central carrier I. The next result is a generalization of
[8, Theorem 8.2].

LEMMA 2.11. Let &2 be a self-adjoint weakly closed real algebra.
Let &% = P + 1.%. If Py, is a JW-algebra of type I then <& 1s
a von Neuwmann algebra of type I.

Proof. Clearly Ky, F.#y,, QFs,, RFs, are all of type I,
E, F,Q, R being as in Lemma 2.16. Thus by Lemmas 2.10 and 2.1 we
may assume . Fs, = G4, and # N1.% = {0}. By [8, Theorem 8.2]
the von Neumann algebra <2y, is of type I. Since & N FHsy = Eua
we may, cutting down by central projections in <# if necessary, assume
Py, is homogeneous [1, p. 252]. We assume 2y, = & QR Z(5F),&F
being an abelian von Neumann algebra acting on a Hilbert space .o~
and <#(5#°) denoting all bounded operators on the Hilbert space 5%
Since wC B, B Hyy =<' QR C, C denoting the operators of
the form M, A e C, I being the identity operator on 57, Thus %’ =
QK C, = being a von Neumann algebra acting on .97, 2 Cc &’ .
Since the center of <7 equals that of <2y, the center of <#’ equals
zZ®C. Thus c o2 c%’. Hence ¥ c &' ¥’. By [1, p.26],

B =Z"=(TRC) =R F(F).
Hence

FNFss=(Z'Q Z () N(Z"QC)
=2')C.

In fact, by [1, p.26], if C'e®’ and C' R Ic o' R F(5), the
matrix representation of C'® I is (T,,) with T,, = 6,,C’, 9,, being the
Kronecker symbol, and as an operator in <2’ @ <Z(5#) its matrix
representation is (S,,) with S,,e &’. Thus S,, =T, so S,, = d,, C'.
Thus C'e 2", C'QIec 2'Q C.

In order to show 7 is of type I it thus suffices to show <& N . Fy,
is of type I. Let Be <z N HAy,. By Lemma 2.2 B=S + 4T with
S, TeZ. As & N2 = {0}, the argument of Lemma 2.9 (i) shows
S, Te & N AL In particular
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Now (2 N Fi4)ss is abelian. By Theorem 2.8 <7 N 2%, is of type
I; the proof is complete.

LEMMA 2.12, Let # be a self-adjoint weakly closed real algebra.
Let @ = & + 1.8, Assume <& has no type I portion. Then there
exists a unitary operator U in B such that U* = —U.

Proof. s, has no type I portion, for if P is a central projection
in g, such that g, P is of type I, then by Lemma 2.3 P is central
in &. Since AP + 1 AP = FP,FP is of type I by Lemma 2,11,
Thus P = 0. By the “halving lemma” then, [10, Theorem 17] there
exist two orthogonal projections F and F' in <&, such that £+ F = I,
and a self-adjoint unitary operator S in .<Zs, such that £ = SF'S. Let
U= (E— F)S. Then U, being the product of two unitary operators
in &2, is a unitary operator in .22, and

U*=(E—F)S)*=SE—~SF=FS—ES=—(E—-F)S=-U.

3. Anti-automorphisms of order 2. We classify all anti-
automorphisms of order 2 of von Neumann algebras leaving the centers
elementwise fixed. Our first lemma is of general nature.

LeMMA 3.1. Let V be a conjugate linear isometry of a Hilbert
space SZ onto itself. Then V* is a unitary operator. If 2 denotes
the self-adjoint weakly closed (abelian) real operator algebra generated
by V*, then VA = AV for all A in 2.

Proof. Since V is a conjugate linear isometry of S7# onto itself
V* is a (complex) linear isometry of 7 onto itself, hence is a unitary
operator. Clearly VV? = V2V and VV— = V*V. Since V' is unitary
and V*V?* =1, V* = (V?¥*, Since operators in &# are weak limits
of real polynomials in V? and (V?)*, V commutes with every operator
in 2.

It was noted in [9, Lemma 3.2] that if 2 is a von Neumann
algebra, 2 a self-adjoint weakly closed real subalgebra of 2 such
that &#Z + 1% = A, F N1#Z = {0}, then the map A + iB— A* + iB*,
A, Be &2, is an anti-automorphism of order 2 of 2. The next lemma
shows that all anti-automorphisms of order 2 are of this form.

LEMMA 3.2. Let U be o von Newmann algebra, and let ¢ be a
s-anti-automorphism of order 2 of . Let & = {AecU: ¢(A*) = A}
Then & 1is a self-adjoint wltra-weakly closed real operator algebra,
RB+1B =W P NiR# ={0}, and ¢(A+ iB) = A* + iB*, A, Be 2.
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Proof. By [1, Théoréeme 2, p. 56] ¢ is ultra-weakly continuous.
Clearly &2 is a self-adjoint real algebra, and is ultra-weakly closed.
Since every operator A in A is of the form

_1 PN i | s
A= Z(A+ (A + i 54 = 5(4) ]

with

LA+ gA) ez

and
%(A — A% e. BN = P + iR .
1

The rest of the proof is equally simple.
From now on the anti-automorphisms will leave the center element-
wise fixed. This is because of the next lemma.

LemmaA 3.3. Let A be a von Neuwmann algebra acting on a
Hilbert space o7, and let ¢ be a x-anti-automorphism of A of order
2 leaving the center of U elementwise fixed. Then

(i) If E 1s a projection in A then E ~ ¢(E).

(ii) If E’ is a projection in A then the map AR — ¢(A)E’ is
a x-anti-automorphism of WE' of order 2 leaving the center of UE'
elementwise fixed. It is denoted by ¢z

Proof. Let E be a projection in A. Let F = ¢(&). Then E =
#(F). By the Comparison Theorem [1, Théoréme 1. p. 228] there exist
central projections P and @ in 2 such that P+ Q = I, PF < PE,
QF = QE. There exists a projection E, < E in U such that PF ~ PE, <
PE. Hence there exists a partial isometry V in 2 such that V*V =
PF,VV* =PE,. As P = ¢(P),

PE = ¢(PF) = ¢(V*V) = g(V)s(V)* ~ o(V)*s(V)
= ¢(VV*) = ¢(PE,) = ¢(PE) = PF .

Thus PE < PF < PE, so PE ~ PF' [1, Proposition 1, p. 226]. Similarly
QE ~QF. E~ F, and (i) is proved.

Let E’ be a projection in ’. Let Ae 2. Following [5] we define
C, to be the intersection of all central projections @ with the property
QA =A. Clearly C, = C,,. By [5, Lemma 3.1.1] AE’' =0 if and
only if C,,Cy = C,Cp = 0 if and only if ¢(4A)E’ = 0. (ii) follows.

LEMMA 3.4, Let % and ¢ be as in Lemma 3.3. Let w, be a
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vector state on . Then there exists a wunit vector y such that
w6 = w, on A,

Proof. Let w = w,9. Then w is a normal state of A. Let E
be the support of w, in U [1, p. 61]. Let F' = ¢(&). By Lemma 3.3
E ~ F. Hence there exists a partial isometry V in 2 such that
E=V*V, F=VV* Consider the state w,, on 2.

Wy, (F) = (VV*Ve, V) = (Bz,x) =1,

so Vee F. Moreover, if w,,(S*S) =0 for Se?, then SVz = 0. Since
E is the support of w, in A, SVE =0 = SFV. Hence SF =0. Thus
F' is the support of w,, in A, hence Vx is a separating vector for the
von Neumann algebra FF. Since w is a normal state of FF, there
exists by [1, Théoréme 4, p. 233] a vector ¥ in F such that w = w,.

LEMMA 8.5, Let U and ¢ be as in Lemma 3.3. Let x be a
unit vector in 7. Assume |[Ux] = I, Let y be the unit vector
constructed in Lemma 3.4. Then the mapping

(S + iT)e — (S — iT)y

where S, T e B ={AecW:g(A*) = A}, is isometric, and extends to a
conjugate linear isometry V of 7 onto [Ny], such that for Ae,

6(A) = VAV .

Moreover, iof W is finite then V maps =F onto 5F,

Proof. By Lemma 3.2 A =<2 +422. Let S, Te.<?. Then
HS + +T) = S* + 2T*, hence

NS + iT)2 | = (S + iT)*(S + iT)z, o)
= ((S*S + T*T)x, ) + «(S*T — T*S)w, o)
= ((8*S + T*T)y, y) + i(S*T — T*S)y, y)
= ((8*S +T*T)y, v) — «(S*T — T*S)y, y)
=[S —iT) | .

Since vectors of the form (S + ¢T)x are dense in 7 the mapping
(S +iT)x— (S — 1T)y extends by continuity to an isometry V of 5#
onto [2y]. Clearly V is real linear, and

VS + iT)e = VES — T)s = (— T — iS)y = —iV(S + iT)z ,

so V is conjugate linear. If Ae <#, S, Te <2, then
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VAAV(S + iT)x = V7'AS — Ty
=V-Y(AS — iAT)y
= (AS + 1AT)x
=AS + iT)x .

By continuity and density, V'AV = A for all Ac .22, ie. ¢(A) =
A* = V'A*V for all Ae.<#. Thus ¢(A) = V*A*V for all Ae .
Since ¢ is of order 2, A = VAV* for all Ae ¥, hence VA=AV?
and V*e’. Moreover, V2 is an isometry of S# onto E, the range
of V2. Thus E, being a projection in ', is equivalent to I. Clearly
E < V(7)) = [Ay]. Since [Ay]e W, [Ay] ~ I, as projections in .
Consequently, if U is finite [Ay] = I. The proof is complete,

LEMMA 8.6. Let U and ¢ be as in Lemma 3.3. Suppose A has
no portion of type III. Then there exists a conjugate linear isometry
V of &7 onto itself such that

#(A) = VAV
for all Aec?U.

Proof. Since 2 has no portion of type III, neither does A’ [1,
Corollaire 3, p. 102]. Since every projection in %’ is a sum of finite
projections, [1, Corollaire 1, p. 244] and every projection is a sum of
cyclic projections, we may choose a family {x,}.e; of unit vectors in
57 such that >, [x,] = I, and [Ax, | [Ax,] is finite. Let ¢[Ax,]
be the anti-automorphism of [%x,]2 constructed in Lemma 3.3. Since
([A,JA) = [z, A [Ax,], [1, Proposition 1, p. 18] is finite, there exists
by Lemma 3.5 a conjugate linear isometry V, of [2x.] onto itself
such that

glAv.J(A) = Vi'A*V,

for each Ae[Ax,JA. Let V=>,V,. Then V is a conjugate linear
isometry of S# onto itself, and

$(A) = 3L o[ ](A[2e,)
= >\ VA An,] V.,
= (2 ve)ar s v,
=VA*V .,

The proof is complete.

THEOREM 3.7. Let U be a von Neumann algebra acting on a
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Hilbert space 57, Let ¢ be a x-anti-automorphism of order 2 of A
leaving the center elementwise fixed. Then there exist two orthogonal
projections P’ and Q' in W with P’ + Q' = I, a conjugation J of the
Hilbert space P’, a conjugate linear isometry J' of the Hilbert space
Q' such that J* = —@Q’, such that

$(A) = JAXT — J'A*J' .

for all A in A. Moreover, if U is of type III we may assume Q' = 0.

Proof. The two cases when 2 is of type IIT and 2 has no type
IIT portion, may be treated separately. First assume 9 has no type
IIT portion. By Lemma 3.6 there exists a conjugate linear isometry
V of 57 onto itself such that ¢(4) = V'A*V for Ae . Since ¢ is
of order 2, V* is a unitary operator in . Let <2 denote the weakly
closed self-adjoint real algebra generated by V*:. Let

Q={xesr :Vw = —u}.

Then Q' is a spectral projection of V2 and by routine calculations
VQ' = Q'V, a fact which also follows from Theorem 2.6 and Lemma
3.1. Let J'=VQ'. Then J’ is a conjugate linear isometry of @’ onto
itself such that J”? =7V*Q = —@Q'. Let P'=1— Q. Then P’ e
By Corollary 2.7 V=P’ has a square root W in ZP’. Put J = WVP’,
Then since W, V, and P’ all commute, simple calculations give

J: = P’ ,
V=JQ + WP =JQ + JW*P',

and
V= —-JQ + JWP’.

Hence, VIA*V = —J'A*J" + JA*J. This completes the proof when
2 has no portion of type III.

Assume 2 is of type III, hence U’ is of type III [1, Corollaire 3,
p. 102]. Thus for every projection E’ in ', E' and E'VE’ are of
type III. Let E’ be a maximal projection in 2 such that ¢, is
induced by a conjugation. If E’ = I there exists a unit vector
xel — E’. By Lemma 3.4 there exists a unit vector y in [x] such
that , + w, : Z — R, 2 denoting the real algebra {4 e 9 : ¢(4A*) = A}.
Since ®, + @, is normal, and every normal state of (I — E")2 is a
vector state [1, Corollaire 9, p. 322], there exists a vector ze[UAx]
such that @, + v, = ®,. Thus w,: 7 — R. Define J by J(S + iT)z =
(S —1iT)z. As in Lemma 3.5 J is a conjugation of [2z] such that

JA*[Az]J = ¢(A)[U=] .
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Since z = 0, [2Az] = 0, and the maximality of E’ is contradicted. Thus
E’ = I, the proof is complete.

We are indebted to the referee for the proof of the nontype III part
of Theorem 3.7, Together with the remarks preceding Corollary 2.7 this
proof shows that the theorem can be proved without the use of the
structure theory in §2. In addition to the type III algebras a great
many finite von Neumann algebras have every anti-automorphism like
¢ in Theorem 3.7 induced by a conjugation.

THEOREM 8.8. Let U be a finite von Neumann algebra acting
on a Hilbert space 57 and having o separating and cyclic vector x.
If ¢ is a x-anti-automorphism of U of order 2 leaving the center
of W elementwise fived, then there exists a conjugation J of Z#
such that

$(A) = JA*J
Jor all Aedl,
Proof. As in Lemma 3.4 there exists a vector y in £ such that
0, + 0,: % — R, 7 denoting the real algebra {Aeq:g(A*) = A}.

Since = is separating there exists a vector z == 0 such that w, + », =
®, on A [1, Théoréme 4, p. 233]. If Ac and Az = 0 then

0 = 0.(A*4) > 0,(A*4) > 0,

so Ax = 0, hence A = 0. Thus z is separating for A. By [1, Corollaire,
p. 235] 2z is cyclic for A. Define J by J(S + 1T)z2 = (S —iT)z, S, Tec .A.
As in Lemma 3.5 J is a conjugation such that ¢(4) = JA*J for all
A in A,

We next show that not every =x-anti-automorphism of order 2
leaving the center elementwise fixed is induced by a conjugation.
For this purpose the next lemma is helpful.

LemmA 3.9. If J' is a conjugate linear isometry of a Hilbert
space 57 such that J'* = —1, then there exists no conjugation J of
57 such that —J'AJ" = JAJ for all operators A.

Proof. Assume J exists, Then —J'AJ’ = JAJ, hence
A= —JJAJJ" = (J'J)A@JJ") .
Note that 7JJ’ is a unitary operator with inverse ¢J’J. Thus
iJ'J =¢e®l,0<6<2m,

and
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J =er], 0 < <2,
Thus
J"? = et JeJ = gite"J = I,

contrary to assumption.

ExaMPLE 3.10. Let M, denote the 2 x 2 complex matrices con-
sidered as all bounded operators on C®. Let

(Te b} d —b]
Ale 4  |—¢ o)
Then ¢ is a =x-anti-automorphism of M, of order 2 leaving the center

fixed. Note that & = {de M,: ¢(A*) = A} is the quaternions. Let
J’ be the conjugate linear isometry of C* defined by

o))
B 74
Then J”* = —1I, and ¢(4A) = —J'A*J’ for all Ae M,. By Lemma 3.9
¢ is not induced by a conjugation.

We are interested in knowing whether there exists a conjugation
J such that JUJ = U for a von Neumann algebra A. An affirmative
solution of this problem would reduce the study of x-anti-automorphisms
of 2 to that of x-automorphisms, since then a x-anti-automorphism can
be written in the form ¢(A) = p(JA*J), where o is the x-automorphism
O0(B) = ¢(JB*J). For type I algebras the solution is a simple conse-
quence of the structure theory for such algebras.

LEmMMA 3.11. Let A be a von Neumann algebra of type I acting
on a Hilbert space S#. Then there exists a conjugation J of SF
such that JUJ = W and such that JA*J = A for all A in the center
of A.

Proof. We first assume 2 is a maximal abelian von Neumann
algebra, i.e, A = A, If E is a projection in A then (HA) = B =
E when considered as acting on the Hilbert space E, hence E is
maximal abelian, By [1, Proposition 9, p. 98] there exists an orthogonal
family FE, of projections in % such that 3 E, = I and E, % is countably
decomposable. If we can find a conjugation J, of E, such that
JEANS, = EN, and J,E,A*J, = E.,A, then J = >,J, has all the
required properties. We assume therefore that 9 is countably decom-
posable. By [1, Corollaire, p. 233] 2l has a separating, and hence cyclic,
vector . The identity map of U onto itself is a x-anti-automorphism
of order 2 leaving the center elementwise fixed. Hence an application
of Theorem 3.8 completes the proof when 9 is a maximal abelian von
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Neumann algebra.

We next assume 2 is an abelian von Neumann algebra. Then U’
is of type I. Hence by [1, Proposition 2, p. 252] there exist central
orthogonal projections P, in ' for each cardinal n, so P,c U, such
that P, is homogeneous of type I, or P, =0, and 3., P, = I. As
remarked above we can restrict our attention to the case when U’ is
homogeneous. We assume therefore ' = & Q) Z(5#), where & is
an abelian von Neumann algebra acting on a Hilbert space 577, &7 (57)
denoting all bounded operators on the Hilbert space 2577. Since A =
N =&’ QC is abelian, A W, hence ' < ¥. Thus & is maximal
abelian, and A = X C. By the above paragraph there exists a
conjugation J;, of 27 such that A = J A*J, for all Ae&. Let J,
be any conjugation of 2#,. Then J =J,®J, is a conjugation of
&7 = o7, Q 57, such that JB*J = B for all B in 2.

In the general case we may by the same argument as above
assume A is homogeneous, so of the form A = F R Z(57;) with F
an abelian von Neumann algebra acting on the Hilbert space .°7;.
By the above paragraph there exists a conjugation J, of .2 such
that JA*J, = A for all Ae®. Let J, be any conjugation of .57,
Since the center of A equals F R C the conjugation J = J, ® J, has
all the required properties. The proof is complete.

The truth of the above lemma without the type I assumption is a
deep open problem. We can show that the existence of an anti-automor-
phism as in Theorem 3.7 implies an affirmative solution.

THEOREM 3.12. Let U be a wvon Neumann algebra acting on a
Hilbert space 57. Suppose there exists a x-anti-automorphism ¢ of
A of order 2 leaving the center elementwise fixed. Then there exists
a conjugation J of 2 such that JUJ = A and such that JA*J = A
for all A in the center of A. Moreover, tf U has no type I portion,
and B = {AecU:p(A*) = A} then JRJ = 2.

Proof. By Theorem 3.7 we may assume there exists a conjugate
linear isometry J' of 57 such that ¢(4) = —J'A*J’, and J”* = —1,
By Lemma 3.11 we may assume 2 has no portion of type I. By
Lemma 2.12 there exists a unitary operator U in &Z such that U* =
—U. Let J =UJ’. Then J is a conjugate linear isometry of &

onto itself, and since
JU =J¢U* = =J'¢(U) = =J(=J'U*J")=UJ", J* =1,
hence J is a conjugation. If Ae .<# then
JAJ = UJ'AJ'U = U*¢(A*)U = U*A