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A NOTE OF DILATIONS IN L?

S. R. HARASYMIV

The objects of study in this note are the Lebesgue spaces
L?(1 < p < ) on the n-dimensional Euclidean space R*. We
consider a function f in one of the above-mentioned spaces,
and derive results about the closure (in the relevant function
space) of the set of linear combinations of functions of the
form

Slasx, + by, o+, @n%n + bn)

where a,, -+, @y, by, -+, 0,€ R, and a1 0, -+, a, + 0.

1. Notation and main results. The Haar measure on R™ will
be denoted by dxz. It will be assumed normalized so that the Fourier
inversion formula holds without any multiplicative constants outside
the integrals involved.

If xe R", and k is an integer such that 1 < &k < n, then xz, will
denote the k-th component of . Multiplication (and of course addition)
in R™ is defined component-wise, in the usual manner.

We write R* = R"\{z: 2, = 0 for some k}.

Suppose that 1 < p < ., Then ¢ will always be written for the
number satisfying

...].'_ -+ ..1'_ =1 .

» q

For each integer & such that 1 <k < =, J, will denote the projection
of R™ onto its k-th factor; 7.e.

J(x) = =z, for all ze R,

If f is any function on R", and a € R*, be R", then f¢ will denote the
function defined by

fix) = flax + b) for all xe R™.

(The map « —ax + b is called a dilation of R".) Finally, the set S,
is defined by

S, ={ffracR* beR".

In what follows, several vector spaces will be considered. If
1 < p < o, L?(R") will denote the usual Lebesgue space. L?(R*) will
be given the usual norm topology.

If fis an element of L?(R") we shall denote by T[f] the closed
vector subspace of L?(R") generated by S;.
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Finally, if W is any open subset of R", we shall write C<(W)
for the space of functions defined on W and indefinitely differentiable
there. D(W) will denote the space of indefinitely differentiable func-
tions with compact supports contained in W. The dual of the last
space is the space D'(W) of distributions on W. For details of these
spaces see e.g. Schwartz [8].

Schwartz [7] considers the space of continuous functions on the
n-dimensional Euclidean space R" equipped with the topology of uniform
convergence on compact sets. He shows that if f is a function in
this space, and if the linear combinations of functions of the form

f(am1+biy"'yaxn+bn), a’bly"'ybneR

are not dense in the space, then f satisfies at least one distributional
equation of the form

P(D)f =0

where P(D) is a nontrivial homogeneous linear partial differential
operator with constant coefficients,
We shall prove the following result:

THEOREM 1. If fe LP(R"), where 1 < p < o, and f # 0, then
T[f] = L*(R").

2. Discussion of problem. The Fourier transform § of a func-
tion ¢ in L%R") is defined as a distribution on R". (See, e.g., Schwartz
[8]). It has the property of being locally a pseudomeasure; i.e., its
restriction to a relatively compact open set W coincides with the
restriction of some pseudomeasure to W (Gaudry [2] and [3]).

If W is an open set, ge LR), Fe D'(W), and if F coincides on
each relatively compact open subset of W with the Fourier transform
of an element of L'(R"), then we define F'-ge D'(W) by

F-§(p) = §(Fp) for all pe D(W) .

It can be shown that if W is an open set, fe L?(R"), g € L'(R"), and
if f coincides on each relatively compact open subset of W with the
Fourier transform of an element in L(R"), then

P ~
fxg=f-gon W,

If f and h are in L?(R"), then from the Hahn-Banach theorem it
follows that ke T[f] if and only if

hxg(0) =0
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for all functions g in L%R") such that
(2.1) fexg =0 for all ae R*.

Therefore, to establish Theorem 1, it is sufficient to prove the follow-
ing assertion: if fe L?(R") for some p satisfying 1 < p < o, and if
¢ is such that (2.1) holds, then

2.2) supp § & R"\R* .

(We are bearing in mind the fact that R"\R* is p-thin, 1 < p < oo.
See Edwards [1].) The relation (2.2) will be established in §4.

To prove (2.2), we shall show that if xe R*, then (2.1) implies
the existence of a relatively compact neighbourhood W of z, and a
function ke L*(R") such that

k-g=0

and |%| >0 on W. This will imply that § = 0 on W. For there will
exist a function K e L'(R") such that

kER=1on W
(Rudin [6], Theorem 2.6.2), and so if @ e D(W), we have
Ko)
§(®)
/\
* K x g(p)

If

Il
S Y H Y

a(p)

= =

I

since kxg = 0. Section 3 is essentially devoted to constructing the
required functions k.

3. Preliminary results. Consider any function ¢ € D(R*). Then
if xe R*, it follows that ¢*~ ¢ D(R*). If s is any distribution on
R", we define a function s/ ¢ on R* by

sV @) = s(p”") for all xe R* .
We then have

LEMMA 1. If @€ D(R*) and s€ D'(R"), then s/ @ € C*(R*).

Proof. (cf. Hormander [5], Theorem 1.6.1.)

First we show that s %/ @ is continuous.

Suppose that o — 2 ¢ R*. Then ¢’»'— @%' in D(R*). For let
a=sup{la.;xesuppp, 1l =k < n} < oo
b=inf{lx,|:xesuppp, 1l <k <n} >0
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and let A, B > 0 be numbers such that
B/b < |z, | < Ala 15ksn

for all 5. Then if y e supp /=, we have y/x e supp . This implies
that

and so
[, |0 < [y ] = ] a, 1<k=n.

It follows that B < |y,| < A. Hence all the sets supp @/~ are con-
tained in a fixed compact subset of R*., Furthermore, since

Dig™™) = xi D)™, 1=k<n,
k

it is easily shown that for each multi-index «,
lim D(@és) = D(p")
J
uniformly. Thus @/ — %' in D(R*) and, since s is continuous,
we have
lims V ¢(z) = s V o("x) .
J

Hence s ¥/ @ is continuous on R*.
To complete the proof of the lemma, it is sufficient, in view of
the above, to show that if 1 < % < n, then

(3.1) Dy(sV @) = —1/J;,-s V J,.Dyp on R* .

The required result will then follow by induetion.
Thus, let ¢, be the unit vector along the k-axis and consider the
quotient

[s V @@ + he) — sV @@)]/h = s[p=+™ — o= ]/h
where € R* and & = 0. We have
(3.2) 1233 [pethen™ — o= /b = —1/a,-(J. D)™ in D(R*) .
To verify this, consider any multi-index « = («,, ---, @,). We have
De[pte+hew™ — oY b
= [/IL =5 Jiw, + my-Degy=s — oD@y

The last expression converges pointwise to D[—(1/z,)(J.Dip)* ']
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The convergence is in fact uniform. This may be deduced from the
fact that if + is any function in D(R"), and % is a positive number,
then

[V + her) — yI/h — DyW)| < ||| Diy |l
which follows easily via the mean-value theorem. This establishes

(8.2), and (3.1) follows. Thus the proof of Lemma 1 is complete.

_ CorOLLARY. If W is any relatively compact open set such that
W < R*, and if ¢ € D(R*) and s D'(R"), then there exists a function
k im LYR") such that

svvzﬁon w.

Proof. In fact we may take for k& any function of the form

8V p-y)’

where ¢ D(R*) and 4+ =1 on W. [Here and elsewhere, * denotes
the inverse Fourier transform:

W) = Smez"””h(y)dy for all he L'(R")] .

LemMA 2. If fe L®(R"), g€ LY(R") and ¢, 4 € D(R*), then

~ — T —
PVe-an=|, eI 1O, 1T Tl @) g @dalde

Proof. Choose a sequence {f;} of functions in L'(R") N L?*(R")
such that

lign fi= fin L*R") .
Then, if + is any function in D(R*), we have
(3.3) lim f;V @ = FV @y in D(RY) .
For, if a is any multi-index, the Leibnitz formula for the differentia-

tion of a product shows that D*[( f,. _) Y @+4] is a sum of terms
of the form

A-D¥(f; = F)V @lD*4p

where 8; < a;,7 =1, ---,n, and A is a constant depending only on «
and B. Thus we are reduced to proving that if & is any multi-index,
then
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(3.4) lim DY (f; — F)V #] = 0 uniformly on supp v .
J

Now, quite generally, if s is a distribution on R*, @ = («a,, ---, @,) a
multi-index, and ¢ a function in D(E*), then

Di(s @) = (1) -+ - J) % {ags 7 (JF1 - -+ JExDigp)}

where the a, are constants depending only on « and £, and the sum-
mation is carried out over all multi-indices £ such that 8, Z «ay, ---,
B, < «a, This is easily shown by induction, using (3.1). Since
J,, -+, J, are bounded away from zero on supp v, it suffices, in order
to establish (3.4), to show that for every multi-index «

(3.5) lim Fi— 7 Jom e JD*p) = 0 uniformly on supp + .
Thus, let

a=sup{le.[:xesuppy,l <k < n}.
Then, if « < supp+, we have

[(f; = F)V (Jix + - TinD ) ()|
—_—
= | [, = Pay-Te - TeeD ey
,,/\
=1 fi = Fllprat || Jit - 52D |,

From this, (3.5) follows immediately, and hence (3.4) and (3.3).
Using (3.3), it is seen that

PV @) = Iimg(f; ¥ o)
(3.6) X
= tim |_g@)-17, 7 p-i"(—a)dz .
Now

[F5 ¥ @9 ]" (=)
= Eme‘z”’”fj V o) ¥ (y)dy

Lo ]| Fbetrdt iy
ey ){], Fude) [T -+ | L) | defdy
2O Ry 7@ |- 17w eyt

— 7 1
LPONT@O | [T Do [yee e Tl fi7 (x)dt .
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Substituting this in (3.6), we have
AR

: — -1
@n =lm| o@{] @ONT@ - 17,0 DFTT T £ @)t o

: — T T -1

=lim| @@/ 70) - 1L@ON| v 1T Tl @ e @dalde
Now, if
a=sup{|t,:tesuppp, 1 =k < n},

then if ¢esupp @, we have
T _ —— _
AT Tl @ g 7 @de = | 1T Tl @)g s 17

—_— —1 -1

< F 1 Tl g (57 = 7
T - -

< U1 Tl gl 157 = £
—_—

< H1 Tl gl |1 = Fllar

Using this, and (3.7) we see that
79 pa0)
/\
= [ @@+ L@ D{], AT T @ g7 @) e

This completes the proof of Lemma 2.

COROLLARY. If ¢e D(R*), fe L*(R"), g€ LY(R"), and if
fexg =0 for all ac R*
then <7 @-§ = 0 on R*,
LeEMMA 3. Suppose that fe L*(R") and that R* (\supp f = @.
Then 1f ge L(R"™) s such that
fexg = 0 for all a e R*,
We have
supp § & R"\R* .

Proof. First we observe that

S A
supp f* = a-supp f
and hence, since R* nsupp f # @,



500 S. R. HARASYMIV
AN
(3.8) U supp f* 2 B* .
a€R*
A
Now suppose that € R*. By (3.8), « € supp f° (sgy). Choose a
relatively compact neighbourhood W of x such that W & R*. There
exists a function ¢ € D(W) such that
=~
SU(p) # 0
. A\
i.e. PV o= () = 0.

This implies thatj\\”ngﬂ"l is bounded away from 0 on a neighbour-
hood of . Since f* ¥V ¢+t e C*(R*) (by Lemma 1) and (by the corollary

to Lemma 2)
A
PV e=g =0 on R*

the corollary to Lemma 1 and the reasoning indicated in §2 together
entail that ¢ suppg. Thus

supp § & R"\R*
as we wished to show.
4. Proof of Theorem 1. We can now prove Theorem 1.

Let fe L*(R"),(1 < p < <), f # 0, and suppose that ge LY(R") is
such that

fexg = 0 for all a e R*.
Since R™\R* is ¢-thin if 1 < ¢ < o, we deduce that
supp f NR* # @ .
Then, by Lemma 3,
supp § & R"\R*

and so (since R"\R* is p-thin) g = 0.

I take this opportunity to thank my supervisor, Dr. R. E. Edwards,
in the first place for suggesting this problem, and secondly, for his
suggestions and criticisms concerning the work presented here.
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