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ITERATES OF BERNSTEIN POLYNOMIALS

R. P. KeLisky anp T. J. RIvLIN

B.(f) transforms each function defined on [0, 1] into its
Bernstein polynomial of degree »n. In this paper we study
the convergence of the iterates B!*(f) as k — o both in the
case that & is independent of » and (for polynomial f) when
k is a function of n.

To each f(x) defined on I: 0 < x <1 there is associated its Bernstein
polynomial of degree n defined by

(L.1) Bu(fiw) = 5 (L) (Mot — oy

It is well known that if f is continuous on I, then
(1.2) lim B,(f; «) = f(=)

uniformly on I, (Cf., Lorentz [2] for this and other properties of the
Bernstein polynomials used here,) Let B,(f) denote the (polynomial)
function defined by (1.1), then for & > 1, BP(f; x) = B.(B*™(f); x)
defines, by mathematical induction, a sequence of iterates of the
Bernstein polynomials. Our purpose is to study the convergence
behavior of this sequence as &k — oo, both in the case that & is inde-
pendent of # and when it is a nonconstant function of «.

We show in § 2 that B*(f;x) converges (uniformly) for fixed =,
to the line segment joining (0, f(0)) to (1, f(1)), and in §3 that the
sequence B/*™)(x*; x) with appropriate assumptions on g(n), also con-
verges, for each s = 0,1,2, --- to a polynomial of degree s whose
coefficients we determine explicitly. Finally, in §4 arbitrary iterates
are defined as a natural generalization of the positive integral iterates.

When (1.1) is rewritten in conventional polynomial form, it becomes

an = {0 S
- Z A?/nf(O)Qb)wq

which reveals that if f is a polynomial of degree m, then B,(f) is a
polynomial whose degree is at most min (m,n). Let s be a fixed
positive integer satisfying s < n. (There is no loss of generality in
this restriction on s for k& > 1, since for s > n, B¥(2°) = B*V(B,(x*))
and B,(x°) is of degree at most n.) We consider f(x) = 27,7 =1, .-+, s.
(1.8) implies that
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(1'4) Bn(x]) = Q% + azsz o a/jjxj = i‘l 7'(.'40'3'—]1;‘ &t ’
g=1 n-

j:l’...’s’

where ¢¢ are the Stirling numbers of the second kind (Cf., Jordan
{1, pp. 168-173]) defined by

(1.5) 0% = (dq’l)q éki(i)(_l)k ,

and

(1.6) {ﬂq:< —71{><1_%> (1" q;1>, g=2 -e,s
ﬂ'l =

2. Limit of the iterates. The study of the iterates of B,(f; x)
for f(x) = «° is considerably simplified if we use the language of linear
algebra. There is no loss of generality in this choice of f(x) since
B, replaces f by a polynomial,

Let A denote the s X s upper triangular matrix whose entries a;;
are defined in (1.4), i.e.,

oM, 1=

2.1 ij — . .
(2.1) % =, P>

Let e, be the column vector of s components, the first s — 1 components
being zero and the last one. Then

LEmMA 1. If Afe, = (a¥, «+ -, ai)", then

2.2) BP(x®) = aPz + aPz® + .- + alPa, E=1,2,+--.

Proof. If px)=cx +cx*+ -+ +e¢x° (for example, p(x) =
B9(x*)) and

B.(p) = dw + d* + -+ + da® = Yic(a;w 4 o0 4 a,;07)
J=1
= > Z ;0,9
=1 j=1

then (d, +-+,d,)" = A(c, »+-,¢,)". The lemma now follows by math-
matical induction on k.

LEMMA 2. The eitgenvalues of A are mw, Ty, +++, T,.

Proof. a;=m,i=1,+++,s, and a;; =0 if ¢ > j.
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Let A4 denote the s X s matrix with the eigenvalues of A, 7, ---, 7,
on the main diagonal and zeros everywhere else. Let V denote
the matrix of eigenvectors of A, normalized so that the entries
on its main diagonal are all 1. V is upper triangular and its
entries are, in general, functions of n. Since AV = V4 we conclude
that

(2.3) Ab = VAV,

Essentially, the following arguments rest on the observation that 4*
is known to us and V and its inverse are independent of %.

LEMMA 3. If V7'=(¥;) then #,,=1,7=1,---,s.
Proof. Let U be the eigenmatrix of A7, i.e.,
AU =Ud.

Let U (which is lower triangular) be normalized so that the entries
on its main diagonal are all 1, Since B,(x%;1) =1 the column sums
of A are all 1 and hence the row sums of A” are all 1. The first
column of U is the eigenvector associated with the eigenvalue 7, = 1,
and hence consists of all entries 1. Due to the way we have normalized
V and U we know that U” = V! and the lemma is proved.

LemMMA 4. If n is fived
lim A%, = (1,0,0, ---,0)" .

ko0

Proof. The entries on the main diagonal of A* are 7¥, ---, ¥ and
limzt =0, =2 +00,8
k—oo
limnt=1.

koo

Thus, as k — o, VA*V~ approaches a matrix whose first row consists of
all 1’s, by Lemma 3, and the rest of whose elements are all 0. Clearly,

(1,0,0, -, 0)f = <1im A")es — lim (4%,) .

PR kmro
THEOREM 1. If n ts fized then

2.4 1lmBP(fie) = f0) + (A1)~ fO)e, O=z=1.

Proof. Let B,(f; %) =«a, + ax + «++ + a,x", then
BO(f; %) = & + aBID(@; 2) + aBY (5 2) + o + BT 0) 5
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hence, in view of Lemma 1 and Lemma 4, with s = 1,2, .- N,
%%B,‘,"’(f; ) =, + (a, + -+ + )
A0 + (A — f(0) .

REmMARK. The convergence in (2.4) is uniform since we have a
sequence of polynomials of fixed degree approaching a fixed polynomial
of the same degree for all x on a bounded interval. Also we have
used the obvious fact that B,(1) = 1, all ».

It is a curious fact that the matrix V has the property that wv,;
is independent of n, for 7 =1,2,3. We have, when s = 3,

1 -1 172
v=[o 1 -32
0o 0 1

Let p(x) = —x + 2* and pi(x) = (1/2)x — (8/2)x* + «*, then we conclude
that,

Bi(p) = (1 - %)jpz . =012,

ot =[(1- 1Yo 2.

These results should be contrasted to the well-known remark (Cf.,
Schoenberg [3]) that the Bernstein operators are “poor reproducers”,
in that they never reproduce polynomials of degree greater than 1.

3. Limit of the coupled iterates. Suppose f(x) = z*. Theorem
1 tells us that for fixed n, B\ (x°) — x as j — oo, while according to
(1.2), B,(z*)— x* as n— oo, Thus, it is of interest to “play-off” the
upper and lower subscripts in B(x*), by considering j = g(n). To
this end we must examine the behavior of the eigenmatrix, V, as n— .
Let the elements of V be v;(=v;;(n)). For j =1, ..., s we have

(3.1 Ay o0y V)" = TV, v 00, V)"

We examine these linear equations more closely. Since V is upper
triangular,

3.2) v;,; =0, 1=7+1, 4,8,
and because of the way we have normalized V
(3'3) 'Ujj = 1 .

It remains, then, to determine the behavior of v;;(n), 71 < J, as n — oo,



ITERATES OF BERNSTEIN POLYNOMIALS

We consider the relevant linear equations from (8.1) (and write v,
place of v;; for simplicity)

@jg,jmiVjr T Oy,y = TV5
(3.4) Qjg,j2Vjs + Qjp,; 1 Vjy + Qjy,; = TV,

AV + Ay + o005+ Oy, = T,

Define 7;; = m; — m;, let P denote the determinant |p;;| such that

a;j 1<J
Dij = 5 t=17,
0 T>7

then

J—1
P = H ﬂ'kj .
k=1
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Let P denote the determinant identical to P except that the 4-th
column of P is replaced by (—a,, —@sj, -+, —a,_,,;). Then, if we

solve (3.4) for v,(=w;,,) by Cramer’s rule, we obtain

P®

(3.5) v; = 5

If we denote by P[? the minor of —a,; in P, then P\? is upper

triangular and

0 p<t
i i Pjr;; =1
(—1)i+?Pl) = /T ) D
@iyt @itsying ** Gpoyp ]g Tj P>,
Now,
— Q[ Ti; p=1
(3.6) (—=1)"**"a,;P2IP = ) (=), 001 22 Qpy,y .
» P>

and for q < 7,
ﬂqj=ﬂq[1~(1~q/n)...(1_ j;1>]

nq{l [g+@+1)+ - +@F -]+ 0(n“2)}
n

(38.7)
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as m— co, Since m;— 1 as n — oo, we obtain, in view of (3.6), (3.7),
and (2.1),

1im&fi)}ﬁ=0, p<ji—1,

Nn—oo

while

P i1 4 . -1
lim ———“f‘l’}f b {II (LsB)a+¢t - 1)} Ol -

B Py 2

Thus, we obtain, finally, that

—1(t+1>
(3.8) lim vy, = v = (~1p2 2l =1 1
W—mﬂ. )
7 —1

where we have used the fact that (Cf., Jordan [1])

([t
t+1 — 2 .

(8.2), (8.3), and (3.8) give the limit of V as n— . In an entirely
analogous fashion, with A" in place of 4, we may obtain the limit
of V-' as n— c. We suppress the details, but the result is

0, P>
1, =
(3.9) lim 7;; = 7% = = (t + 1)
n—0c0 . LL 2 . .
Qi~i t ’ i <
——7
6 - om0
— 14
Let us put
(3.10) E; = exp I:—(;)] = lim 7} .
THEOREM 2. Suppose g(n) ts a nonnegative integer for each mn,
and
(3.11) lim 9™ _ o,

n—00 n

then we have
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(3.12) lim B7™(x*) = Z b’
where
— 19
s . (— 1)”'( )
(3.13) b = l() S} J = B,
S i=i

(23—2)(J+s~1

J—1 s—1J

4=1,+..,8 (where, when &« = « in (38.11), we have Ef=1 and
Ef=0,7 >1 in (3.13)).

Proof. A*™ = VA*™ V. Now
lim 9™ = A*

fn—ro0

where 4* is a diagonal matrix with entries Ef,j=1,.--,s on its
main diagonal.
Let

imV =V*

n—sc0

and

lim V—-l — (V’——l)* — (V*)—I .

n—o0

The entries in V* and (V*)™* are given by (3.2), (3.3), (3.8), and
(3.9). Thus, we may conclude that

V*a*(V*) e, = (Hm A"“”)es = lim (4A%"e,)

and the existence of the limit in (3.12) is established. In order to
verify (3.13), we need only note that

(3.14) (byy =+, b)) = V*AX(V*) e, ,
so that
(3.15) b= S\ vETAES,  i=1,-+1,5.

REMARK. If a =0, then 4* =1 and we conclude from (3.14)
that (b, +++,b,)" =¢,,0rb; =0,7=1,---,5s —1,b, =1, In particular,
then, if g(n) = 0, we have proved (1.2) for the case f(x) = 2°. As a
curiosity we also note that we have established the seemingly nontrivial
identities
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s — 1\*
GG )
3.16 J =0
(3-16) %(2g‘-2(j+s—1 ’
J—1 s—1J
With some simplification (3.16) may be written in the equivalent form

(3.17) which holds for odd ¢ and % positive

t+k<2n+t 2k + ¢ _
t n—k

1=1,¢0,8—1

(3.17) ) (-1)k( Tt

Additionally, since
kil .
Za“:l, ]’—“1,"‘,8
foms
and

$ -

;aijvjk:ﬂkvik, ?/:1,"',3; k:].,"‘,s,

=

we obtain, after summing on 7 on both sides of (3.18) and interchang-
ing the order of summation on the left

2 Vi = T 25 Vi
Jj=1 =l
from which we conclude that, if 0,, is a Kronecker delta.

8
> Vi = Oy
=1

and hence also

}::1 vzkk = 51k .
We thus have the seemingly nontrivial identities:
=1t +1
R | (b |
(3.19) 1 + 3 (—1)i+i2i—¢ - =0, J=2, 4,8,
=1 . . J —
[(5 — 2)!]2( . >
j—1

or, equivalently, if n > 1,

n 1kn+k 7 1 _0o
(3.20) e (") - o

k=0

4. Tterates of all orders, If ¢ is any real number, — o <t < oo,
we are now in a position to define B{(f), in a manner consistent
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with our definition when ¢ is a nonnegative integer. We define
(4.1) B(x*) = b(t)x + by(t)x® + «-+ + by(t)a*, k=1,2,-..,
where

4.2) Ou(t)y + -+, b(2))" = VAV e, .

In (4.2), 4* is defined to be the diagonal & x k& matrix whose entries
on the main diagonal are nf,x%, .-, 7. It now follows that, since
e, +++,e, is a basis in F*(s < n), if

(4.3) P =ax -+ aud+ -0 +

then

(4.4) BY(p) = >, @B (') .
=1

Moreover, if we define

4.5) BY(c) = ¢
and
(4.6) B%(c + p) = ¢ + B;"(p)

where ¢ is a constant and p is given by (4.3), then we obtain
@.7) BY(p) = >, a.BO(x)
i=0

when
D=0+ Xx + o0 4+ @z,
We observe further that if —oco < % < <o, then
At — fogt
and so it is easy to see that
Bi'*(a¥) = B (B{"(@") = BI(BY(@") ,
and hence
B+ (p) = BY(B"(p) = Bi(B{ (1))

for any polynomial p of degree at most n.
If f is bounded on [0, 1], we can now define

(4.8) B(f) = B;(B.(f)) .

This definition focuses attention on the case ¢ = 0. The polynomial
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of degree at most n

Bi(f) = B.2(f) = B:(B.f)

is a kind of surrogate f. How is this polynomial related to f? It is
clear that if f = p, a polynomial of degree at most n, then

Bip=mp.

In particular, let p = L,(f) be the unique polynomial of degree at
most 7 which agrees with f(x) at x = j/n,5 =0, --+,n. Then B,(f) =
B.(L,(f)) and so

Bi(f) = Bi(L.(f) = L.(f) .

Of course, this result could have been obtained without the apparatus
of this paper, but it comes out of our discussion quite naturally.

We wish to thank Benjamin Weiss for some helpful advice on
this work.
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