Pacific Journal of Mathematics

ON THE UNION OF TWO STARSHAPED SETS

D. G. LARMAN

Vol. 21, No. 3 BadMonth 1967

ON THE UNION OF TWO STARSHAPED SETS

D. G. LARMAN

Let S be a compact subset of a topological linear space. We shall say that S has the property φ if there exists a line segment R such that each triple of points x, y and z in S determines at least one point p of R (depending on x, y and z) such that at least two of the segments xp, yp and zp are in S. It is clear that if S is the union of two starshaped sets then S has the property φ , and the problem has been raised by F. A. Valentine [1] as to whether the property φ ensures that S is the union of two starshaped sets. We shall show that this is not so, in general, but we begin by giving a further constraint which ensures the result.

THEOREM. If a compact set S, of a topological linear space, has the property φ , and, for any point q of S, the set of points of R which can be seen, via S, from q form an interval, then S is the union of two starshaped sets.

Proof. Consider the collection of sets $\{T_q\}, q \in S$, where T_q denotes the set of points of R which can be seen, via S, from q. If every two intervals of this collection have a nonempty intersection, then it follows from Helly's Theorem that S is starshaped from a point of R. Suppose, therefore, that there exist points q_1, q_2 of S such that $T_{q_1} \cap T_{q_2} = \phi$. We partition the collection $\{T_q\}, q \in S$, into three collections $\{T_q\}_1, \{T_q\}_2, \{T_q\}_{12}$, so that T_q belongs to $\{T_q\}_1$ if T_q meets T_{q_1} but not T_{q_2} , T_q belongs to $\{T_q\}_2$ if T_q meets T_{q_2} but not T_{q_1} , T_q belongs to $\{T_q\}_{12}$ if T_q meets both T_{q_1} and T_{q_2} . If T_q , T_r are two sets of $\{T_q\}_i$ (i=1,2) then it follows from φ applied to the points q, r and $q_j (j \neq i)$ that T_q meets T_r . If T_q, T_r are two sets of $\{T_q\}_{12}$, then, since both T_q and T_r span the gap between T_{q_1} and T_{q_2} , it follows that T_q meets T_r . Further, if T_q belongs to $\{T_q\}_{12}$, then it must meet every set of at least one of the collections $\{T_a\}_i$ (i=1,2). For, otherwise, there exists sets T_r , T_r , belonging to $\{T_q\}_1, \{T_q\}_2$ respectively, which do not meet T_q . However, by property φ applied to r_1, r_2 and q, this implies that T_{r_1} meets T_{r_2} and hence that

$$T_{r_1}\cup\ T_{r_2}$$

spans the gap between T_{q_1} and T_{q_2} . But this implies that $T_{r_1} \cup T_{r_2}$ meets T_q ; contradiction. We now form the collections $\{T_q\}_{12i}$ (i=1,2) so that T_q belongs to $\{T_q\}_{12i}$ if either T_q is in the collection $\{T_q\}_i$ or T_q is in $\{T_q\}_{12}$ and meets every member of $\{T_q\}_i$. We note that

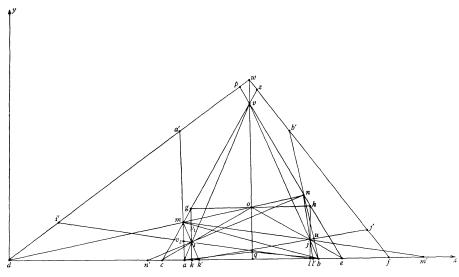


Fig. 1

$$\{T_q\}_{121} \cup \{T_q\}_{122} = \{T_q\}, \ q \in S$$
 ,

and combining the results above with Helly's Theorem, we deduce that the intersection U_i of all the members of $\{T_q\}_{12i}$ is a nonempty closed set. Let s_i be a point of U_i and let S_i be the set of points of S which can be seen, via S, from S_i . Then S is the union of S_i and S_i which are starshaped from S_i and S_i respectively.

Counter-example. There exists a plane compact set S which has the property φ but, nevertheless, cannot be expressed as the union of two starshaped sets.

We assume the existence of a rectangular coordinate system and let c, e, v be the vertices of an equilateral triangle, with c, e on the x-axis, e lying to the right of c, and v lying above the x-axis. Let o be the centroid of the triangle cev and let the line through o, which is parallel to the x-axis, meet cv, ev at g, h respectively. Let the vertical line through g meet co at i and ce at k. Let the vertical line through h meet eo at g and g at g and g at g and let g produced meet g at g and let g produced meet g at g and g are the g and let g produced meet g at g and g and g are the line g and g produced meet g at g and g and g are the g produced, meet the g-axis at points g, g, g, g, respectively. Let g meet g at g and let g produced meet g are an at g. Suppose the lines g produced, g produced, meet the g-axis at points g, g, respectively. Let g meet g at g and let g produced meet g an at g. As

$$d \longrightarrow -\infty$$
, $\rho' \longrightarrow \rho$, $k' \longrightarrow k$, $m \longrightarrow g$, $v_1 \longrightarrow g$.

Hence we can suppose that d has been chosen as to ensure that (i)

k' and ρ' are distinct interior points of ab, with k' lying to the left of ρ' , and (ii) the quadrilateral mv_1iv_2 is nondegenerate, and i is closer to the x-axis than is m. We choose a point f on the x-axis and to the right of e, and a point w on the line ov produced and strictly above v. Let ev produced meet dw at p and let ev produced meet ev produced, which lies strictly above the ev-axis but which lies below the line segments ev and ev in Now, by (ii), the interior ev of the quadrilateral ev is nonempty, and, if ev produced meets ev at ev to be the interior of the triangle ev is nonempty. We define ev to be the interior of the triangle ev to be ev to be ev of the quadrilateral ev to be the interior of the triangle ev to be ev of the ev of the property ev of the ev of ev of the triangle ev to be ev of the ev of ev of the property ev of ev of

Suppose that p_1 , p_2 , p_3 are points of S for which no two can together be seen from any point of df. As any point within vzwp can see each of c, d and e, we deduce, from above, that none of p_1 , p_2 , p_3 can lie within vzwp. But this implies that each of p_1 , p_2 , p_3 can see one of a and b; contradiction. Therefore, we conclude that such a triple of points cannot be chosen in S and hence that S has the property φ , with $R \equiv df$.

We now show that S is not the union of two starshaped sets. Suppose, therefore, that p_1, p_2 are points of S and that each point of S can be seen from at least one of p_1, p_2 . Let am produced meet dw at a' and let bn produced meet wf at b'. If neither of p_1, p_2 lie within aa'd, then neither point can see the interior of the segment mv_2 . Hence p_1 , say, lies within aa'd and, similarly, p_2 lies within bb'f. Let iv_2 produced meet dw at i' and let ju produced meet wf at j'. Then p_1 must lie within dav_2i' , for, otherwise, the interior of the line segment v_i cannot be seen from p_i or p_i . Similarly p_i lies within fbuj'. Let ni produced meet the x-axis at n' and let mj produced meet the x-axis at m'. As p_2 cannot see the interior of the line segment nj, p_1 must lie within ain'. But then p_1 cannot see the interior of the line segment mv_1 and so p_2 must lie within jbm'. We note that $p_1 = a$, $p_2 = b$ is impossible and that i and j are the same distance from the x-axis. It follows that p_1 i produced, p_2 j produced meet at an interior point g' of ijv. But as C_1 and C_2 are nonempty open sets, it follows that there is a nonempty quadrilateral Q, which lies within ijv and has g' as its lowest vertex, whose interior cannot be seen from either p_1 or p_2 . As Q lies in S, this is a contradiction, and we conclude that S cannot be expressed as the union of two starshaped sets.

REFERENCE

1. F. A. Valentine, Convex sets, McGraw-Hill, 1964.

Received December 22, 1965, and in revised form May 2, 1966.

UNIVERSITY COLLEGE, LONDON, ENGLAND

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

J. P. Jans

University of Washington Seattle, Washington 98105 J. Dugundji

University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
ORAKA UNIVERSITY

OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 21, No. 3 BadMonth, 1967

Richard Allen Askey, A transplantation theorem for Jacobi coefficients	393
Raymond Balbes, <i>Projective and injective distributive lattices</i>	405
Raymond Balbes and Alfred Horn, Order sums of distributive lattices	421
Donald Charles Benson, Nonconstant locally recurrent functions	437
Allen Richard Bernstein, Invariant subspaces of polynomially compact	
operators on Banach space	445
Robert F. Brown, Fixed points and fibre	465
David Geoffrey Cantor, On the Stone-Weierstrass approximation theorem	
for valued fields	473
James Walton England, Stability in topological dynamics	479
Alessandro Figà-Talamanca and Daniel Rider, A theorem on random	
Fourier series on noncommutative groups	487
Sav Roman Harasymiv, A note of dilations in L^p	493
J. G. Kalbfleisch, A uniqueness theorem for edge-chromatic graphs	503
Richard Paul Kelisky and Theodore Joseph Rivlin, <i>Iterates of Bernstein</i>	
polynomials	511
D. G. Larman, On the union of two starshaped sets	521
Henry B. Mann, Josephine Mitchell and Lowell Schoenfeld, <i>Properties of</i>	
differential forms in n real variables	525
John W. Moon and Leo Moser, Generating oriented graphs by means of	
team comparisons	531
Veikko Nevanlinna, A refinement of Selberg's asymptotic equation	537
Ulrich Oberst, Relative satellites and derived functors of functors with	
additive domain	541
John Vincent Ryff, On Muirhead's theorem	567
Carroll O. Wilde and Klaus G. Witz, <i>Invariant means and the Stone-Čech</i>	
compactification	577