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We prove the following theorem. Let . be a homogen-
eous elliptic operator of the second order with constant coef-
ficients. Let f be a Lebesgue integrable solution of

LA f(X)]=0
for all X in some neighborhood of the point 4 in the Euclidean
space E,., Let X = (%, ---,2,) and H = (h,, -+, h,). Then for
each p=1,2,--- the homogeneous polynomial ¢,(H; f) defined
by

LT 5 orf >
H;f)=
eo(H; f) 71+..§‘rn:p'm! SRR (690{1 cosOagn JX=A

is an indefinite form, or is identically zero, and it satisfies
the same differential equation < 4[o,(H; ) =0 for all
HeE,. Analogous differential relations are true for the
solutions of homogeneous hypoelliptic equations of any order.
The infinite differentiability of these seolutions is called upon.

2. Forms associated with differential operators. Let FE, be
the n-dimensional Euclidean vector space and let R = (v, ---, 7,), a
multi-index, be a point whose coordinates »; are nonnegative integers;
associated with R are the nonnegative integers |B| =7, + -+ + 7,
and R! = »! ... r,! and the differential operator

o8l

1 DFf —_ _ _~
( ) x ax’l”l e ax;n

where X = (¢, ---,2,) € E, .
It H=(h, +-+, h,) e E,, we define the differential operators <,(H)
for = 1’2’ s by

0

1 P > 1
= —_— ven h P — = hTt . hra DBl
Z(H) p! (hl o, * + "o, u?:p R! hit -« hir D

and we let <Z,(H) be the identity operator. Let 2 C E, be a domain
and let C*2) be the class of all real-valued functions having con-
tinuous partial derivatives of order # on 2. If A= (a, +--,0a,)eQ
is arbitrary but fixed once and for all, and if fe C*Q) then we define
p,(H; f) for p = 0,1, ---, k& to be the result of applying Z,(H) to f
and evaluating the partial derivatives at A; thus

(2) o (H; f) = 5 R}—,hrl---hzn (DE'f) xes -

IRl=p LU:
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Hence ¢,(H; f) is a homogeneous polynomial of degree p in
hiy =+, hay 1i€. @y(H; f)
is a form of degree p so that for every real number A we have
P,(M; ) = Mou(H; f) .
These forms also have the property that if Xe E, and if

f(X): i e 720 K(R)(a;l - a’l)rl e (xn - an)Tn

7r1=0

converges absolutely for X in some neighborhood of A, then in such
a neighborhood

AX) = 3 0/X — 4; ).

For n = 2, Mann [4] has shown that if f is harmonic in a neigh-
borhood of A, then each form ¢,(H;f) is harmonic and, unless
identically zero, it is an indefinite form. Here we generalize this
result to more variables and to more general differential equations.

3. A lemma. Let &5 be an arbitrary homogeneous linear dif-
ferential operator of order ¢ with constant coefficients B(R):

(3) “Zx = >, BR)DY'.

|IR|=¢

Let F(X) = Z%[f(X)] and @,(H) = “le,(H; f)]. We have the
following result.

LEMMA., If feCHRQ),Ae? and k = q then

Ppo(H; F) if p=gq

(4) O(H) = i i pea—1

Proof. The second line of (4) is clear since &%, is of order

q=p+1

whereas ¢,(H; f) is a polynomial of degree p. The results is also
obvious if ¢ = 0.
Now let 1 < ¢ <p<Fk. Applying the special operator /6, to

(2) we obtain

O o Hif) = 5 T hph e hin(DE ) 5o,
ah1 ITftZITp R!

Putting ¢, =»,—1 but ¢, =7, ---, t, = r,, we see that all {;,= 0 and
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0 1 0
L o(H: f) = — Rttt .. Bta (DIF 2
oh, P(H: 1) wé—l T! 1 < * 6x1f>x=A

Iteration immediately gives
Sz PAH: ) = 9oy (Hi )
if », < k. Hence, if |R| = q we get from (1)
Dii'p,(H; f) = @y in(H; D¥'f) = @, o(H; DE'f) .
Multiplying by B(R) and summing over all R such that |R| = ¢, we
obtain (4) after applying (3) and the definitions of @,(H) and F(X).

COROLLARY. Let &% be a homogeneous linear differential oper-
ator of order q with constant coefficients. Let fe C*Q), AcQ and
kzq. If f satisfies %[ A(X)] =0 in Q, then Flp,(H; )] =0 for
all He E, and all p = 0,1, +«-,

Proof. By hypothesis Fe C*Q) is identically zero in 2. From
(2) it follows that ¢;(H; F') = 0 for all j = 0 so that (4) gives
o,(H)=0
for all p=¢q. The same conclusion also holds if p < ¢ —1 by (4)

and the result is proved.

4. The main results. In order to formulate the first of our
results, we need to recall the idea of a hypoelliptic linear differential
operator. If

Z = >, K(R)D¥F

IRl =8

is a linear differential operator of order not exceeding s with constant
coefficients, where D# is defined by (1), then we can associate with
&7 the polynomial P, of degree not exceeding s, defined by

P(W) = Ij}}_]SSK(R)i'R‘wP covwin, W= (w, -+, w,) e E,;

this polynomial results from the formal replacement in .2 of each
differentiation operator 9/ox, by 1w, where ¢* = —1. If
| X[ = (2 + -+ + a})'”

is the usual Euclidean length of the vector X, we also associate with
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&7 the function d defined on E, by
AY)=g. Lo Al Y = U+ [ VI}?
where the g.l. b. is extended over all U, Ve E, such that
PWU+11V)=0.
Finally, we say that &7 is hypoelliptic if d(Y) — « as

min{|y; [, <=+, [Y. |} — oo .

For other equivalent definitions, see Hormander [3, p.100]. Both
elliptic [3, p.102] and parabolic [3, p.152] operators are hypoelliptic.

THEOREM 1. Let <% be a homogeneous linear operator (i.e.
|R| = s for some s) with constant coefficients which is hypoelliptic.
If AcQ and f is a Lebesgue integrable solution of F%[f(X)] =0 in
0, then “Hlp,(H; )] =0 for all He E, and all p =0,1, ---

Proof. Since f is integrable on 2, the expression S fX)(X)dX
defines a distribution; here +, a test function, is in C""Q(Q) and van-
ishes outside a compact set. (See Hormander [3, pp. 2-5].) It follows
from the last part of Theorem 7.4.1 on p. 176 of Hormander that
feC=(Q). Since k may be taken arbitrarily large in the Corollary,
its conclusion yields the conclusion of the present theorem.

THEOREM 2. Let < be a homogeneous elliptic operator of the
second order with constant coefficients. If AcQ and f is a Lebesgue
integrable solution of %[f(X)] =0 in 2, then for each p =1 the
form @ (H ;f) is either indefinite or is identically zero.

Proof. By the preceding result <“[p,(H; f)] =0 for all He K,
and all p = 0. Suppose that for some p ¢,(H; f) is not indefinite;
then it is semi-definite and, without loss of generality, we may assume
that it is negative semi-definite. Then for all He E, we have

P,(H; f) =0 = @,0; f)

where 6 = (0,0, --- 0). However, by the strong form of the maximum
principle, see Courant-Hilbert [2, v. 2, p. 326], for solutions of homo-
geneous elliptic equations of the second order, it follows that ¢,(H; f)
is constant in FE,. This constant is 0 since ¢,(0; f) = 0.

For odd p a much simpler proof results from

P —H; f) = (=1)’p,(H; f) = —@,(H; f);
hence, if @,(H;f) is not identically 0, it takes both positive and
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negative values and is therefore indefinite.

It may be remarked that there is a result connected with this
which is independent of differential operators. This result asserts
that if fe CHQ), Ae 2 and the ¢, (H; f) are identically zero for

7”:1323"',17_'1’

where 1 < p <k, but @,(H; f) is an indefinite form, then in each
neighborhood of A the function f assumes values which are both
greater than f(A) and less than f(A). This result is proved by ex-
panding f about A in a finite Taylor series and using the continuity
of the partial derivatives of order p. For p = 2, the result is par-
ticularly well-known and may be found, for example in Apostol, |1,
pp. 149-152].

It is a consequence of this result that if one could prove Theorem
2 without an appeal to the maximum principle, then one would have
an independent proof of this principle. In fact, when n = 2 and %
is the Laplacian, Mann [4] does this and it is not unreasonable to
suppose that there are other cases of second order elliptic equations
for which this can be done.
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