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The elementary proofs of the prime number theorem are
essentially based on asymptotic equations of the form

(A) f(x) log x + J V ( y ) dφ(t) = O(x) ,

where f(x) is some function concerning the primes, φ(x) is
Tchebychev's function and the limits in the integral—as
throughout in this paper—are taken from 1— to « + . This
paper gives an elementary method for refining the right hand
side of (A).

This method is based on the lemma of Tatuzawa and
Iseki [2], and, assuming the prime number theorem, on an
estimation of remainder integral which is more accurate than
earlier ones.

Writing

ψ(x) - Σ Λ{n) - Σ log p, R{x) = ψ(x) - x

we have the two equivalent forms of Selberg's asymptotic equation

(1) R(x) log x + J * Λ ( - | ) df(t) = O(x) ,

( 2 ) ψ(x) log x + ( V ( — ) df(t) - 2x log x + 0{x) ,

each of which is known to imply the prime number theorem: ψ(x) =
x + o(x). In this paper we give refinements of (1) and (2), showing
that

(1') R(x) log x + J " Λ ( — ) dψ(t) = ~(Ύ + 1)X + o(x) ,

( 2') ψ(x) log x + j V ( — ) dψ(t) = 2x log x - (2γ + l)x + o(x) ,

where 7 denotes Euler's constant. The prime number theorem, however,

has then to be assumed. In addition, we give some similar results.

2* Using the idea of Tatuzawa and Iseki [2] we start from the

following
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LEMMA. Let f(x) be defined for all x ^ 0 and let

( 3 ) g(x) = log x Σ /(-) - log x\*f(£) d[t] .
n^x \n / Ji v t /

Then

( 4) f{x) log x

M(x) =

The Lemma follows immediately by substituting the expression (3)
for g in the right hand side of (4) and noting that

An) = X /£(cZ) log 4 = - Σ /^(d) log d .
din d din

Inserting f(x) — R(x) in (4), we obtain the left hand side of (Γ).
On the other hand,

X ψ(-) = Σ log n = a? log x - x + O(log a?)
%<« \ ^ / n^x

= x Σ — - (y + 1)* + OOog a?) ,

and writing x = [x] + 0(1), we obtain

g(x) = log x ( Σ f (.£) - Σ —) = log x ( - (7 + l)[x] + u(x)) ,
\n^x \n/ n<x n/

where u(x) — O(log a;). Thus we have

\}(f>dM(t) = - (v + l>5;[f]l<*frftfίί) + JXf)l<«f dAKί) .

From the lemma with /(a?) = 1 we see that the first expression on the
right can be written as

- (7 + l)(log x + f(x)) = - (7 + l)a + o(x) ,

assuming the prime number in the form ψ(x) = x + o(x). This yield

R(x) logx + \^R(^ί>jdψ{t) - - (7 + l)α? + o(x) + ("^—)log— dM(t) ,

which proves (1'), as soon as we can show that the last expression is
o(x). We choose 0 < δ < 1 and write
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I=\ul±.)\ogί-dM(t) = \ +\ = i + Jt.
Jl \ t J t Jl JSa;

The integral Ix can, by virtue of u(x) — O(log x), be estimated as
follows:

where η(δ) vanishes with δ. In order to estimate I2 we choose an
arbitrary ε > 0 and x' > 0 such that | M(x) | < ε», if δx > *', which
can be done by the prime number theorem. Then, integrating by
parts, we obtain

IΔ ^

4 4 Bεx +DΓ- d(\og t u(t))
t

-J εa; =

where KB is a constant depending only on d. Thus we can choose the
number d small enough to make the expression \Iι\/x arbitrary small
and then for fixed δ choose the value of x( > xf) so that the same holds
for I2. Thus we have I — Iλ + I2 = o(x), and (1') is proved. (2') then
follows immediately by inserting R(x) = ψ{x) — x and observing the
equation

[° dψ(t) = l o g a . _ Ύ + 0 ( 1 ) >

Jl t

which also follows from the prime number theorem.

3* The method used above can be applied to several similar
problems. Taking the prime number theorem for granted and using
(3) and (4) with f(x) equal to

or

xB(x) = x μ(n)

we obtain (see [1] p. 36)

M(x) log x —) df{t) = o(x)
t /
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Futhermore, writing

6(x) = ^ ! i - log x + 7 - h(x) - log x + 7 ,
Ji ί

and applying the same method to the function xe(x), we can show
that (see [1] pp. 22-23)

e(x) log x + 1 ε(—) dh(t) = (ic + 72) + o(l) ,

or

r β /j&Λ dϋ(ί) + Γ log t dh(t) = log2 x - 27 log x + K + 272 + o(l) ,
V t / Ji

where

Wirsing ([3] p. 8) gives by stronger assumption and assertion a
similar result for the function

r(x) = Σ (-ί -
n n

Corresponding equations concerning the prime number theorem for
arithmetic progressions can also be deduced.

In concluding, I wish to thank Professor Kenneth Rogers for
helpful conversations and other assistance with this paper.
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compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Pacific
JournalofM

athem
atics

1967
Vol.21,N

o.3


	
	
	

