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This paper deals with relative satellites and derived
functors of functors from an additive category % into an
Abelian category. The satellites and derived functors are
defined by universal properties relative to classes & of morphisms
of U that contain all morphisms whose domain is an initial
object of ¥, that are closed under multiplication and base-
coextension, and whose elements have cokernels. The existence
of satellites and derived functors relative to © is shown by
a method due to D. Buchsbaum without using the existence of
either enough &-injective or S-projective objects in %. With
the proper notion of ©-exactness in 9 the exactness of the
long satellite resp. derived functor sequence is established
under quite general assumptions,

In the absolute case where 2 is an Abelian category and & is the
class of all monomorphisms of 9 the satellites resp. derived functors
relative to & are the well-known absolute satellites resp. derived
functors as defined by H. Cartan and S. Eilenberg [2, Ch. 3 and 5]
resp. P. Gabriel [4, Ch. 2]. The existence and exactness theorems
4.3,4.5,4.6,4.7,4,9,5.2,5,5 and 5.6 of this paper especially furnish
the corresponding theorems of H. Cartan and S. Eilenberg [2, Ch. 3
and 5], A. Grothendieck [5, Ch. 2], D. Buchsbaum [1], P. Gabriel [4,
Ch. 2], and H. Rohrl [9].”

If A is Abelian and & is the class of morphisms of an injective
structure on ¥ in the sense of J. Maranda [7] then one recovers the
results of [8]. In the preceding example the assumption that U is
Abelian is not necessary as has been shown by S. Eilenberg and J. C.
Moore [3].

The results of this paper apply in particular to the following
cases (§6)

(I) The category % has enough T-S&-injective objects. In the
absolute case one obtains an improvement of the results of H. Rohrl
[o].

(II) For every object A in A the preordered class &S(A) of all
morphisms in & with domain A has a largest element. ‘

(III) The category 2 has enough &-injective objects. This case
has been dealt with in [3].

1 After submission of this paper to the editor a paper of F. Ulmer Satelliten
und derivierte Funktoren, Math. Z. 91 (1966), appeared. Ulmer also uses the method
of D. Buchshaum [1], and obtains, for the absolute case, results similar to ours.
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In the first paragraph it is shown that the assumptions of (II)
resp. (III) are often satisfied. A detailed discussion of the assumption

(ITI) is contained in [3].

The ultimate goal, however not yet attained, of these considera-
tions is to discard the assumption that 2 is additive, and thus to
treat functors, e.g. on the category of topological spaces or the category
of c.s.s. complexes. There are many examples of nonadditive categories
A with classes & which satisfy the assumptions of (II). We remark
that classes & with the dual of the above indicated properties are
considered in algebraic geometry [6, Ch, 1, p. 139]. This paper only
treats right satellites resp. derived functors of covariant functors in
one variable, and leaves the obvious generalizations and dualizations
to the reader. It should be noted in particular that the special cases
treated in §6 at once dualize to left satellites resp. derived functors
including the exactness of the long sequences.

Notational conventions. If A is a category and A, A’ are
objects of A then A(A, A’) is the set of all morphisms from A4 to A'.
The domain resp. the codomain of a morphism a of U are denoted
by Qa resp. Za. The class of all morphisms with domain A is denoted
by 2(A). It is preordered in an obvious fashion. If & is a class of
morphisms of A we set S(A): = SN AA). The full subcategory of
the category of all morphisms of A having the elements of & as
objects is also denoted by &. If a is a morphism with cokernel this
cokernel is denoted by Coka, and the canonical morphism Za——Coka
by coka. Injections of subobjects into objects are often indicated by
“inj”, canonical projections of direct sums as “proj”.

1. The classes ©. 1.1. DEFINITION. Let U be a category and
& a class of morphisms of 2. Denote by (CO)-(C4) the following
properties of the pair 2, &:

(CO) A is pointed, and every morphism O&A is contained in .

(C1) & is closed under multiplication, i.e. a € &, be S, and Qb = Za
imply ba e &

(C2) & is closed under base coextension, i.e. if the diagram

a

A — A’
[, |
B—— B

is cocartesian, that is a push-out, and if a € & then be .
(C3) A is pointed, and every element of & has a cokernel.
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(C4) If a product ab is in & then be .

We first discuss some examples of such classes &, in particular
classes which satisfy the properties (II) or (III) of the introduction.
We also investigate the question how one can obtain new classes from
given ones,

ExampPLE [1] 1.2. Let U be an Abelian category and & a “h.f.”-
class of 2 in the sense of [1], i.e. let & be a class of monomorphisms
of U satisfying

(a) (i) © is closed under isomorphism.

(ii) All retractions lie in &.
(ili) & is closed under multiplication.
(iv) If ¢ is a monomorphism and tse & then se .
(a*) The class P(S) of all possible cokernels of elements of &
satisfies the dual conditions of (i)-(iv).
Then & satisfies the properties (CO)-(C3).

If F: A——C is a functor and T a class of morphism of € then
denote by F—'¥ the class of all morphisms of ¥ whose image under F
lies in .

ProrosiTiON 1.3. Let F:2——€ be a functor which preserves
push-outs, and let T be a class of morphisms of €.

(i) If T satisfies either one of the conditions (Cl), (C2), or (C4)
then so does F—'X.

(i) If A, €, and F are pointed and if T satisfies (CO) then so does
F—Z

The proof is obvious.

We remark that F, in particular, preserves push-outs if it has a
right adjoint.

ProposiTION 1.4. Let F: % — € be a functor with right adjoint
G: € — A, and let T be a class of morphisms of € satisfying (C4) such
that for every object C of € the class (C) has a largest element.
Then, with &: = F'—'T, for every object A of 2 the class S(A) has a
largest element.

Proof. Let A be any object of U and let ¢, e (FA) be a largest
in T(FA). Assume that s;: A — GZt, is the unique morphism such that
the diagram

FA— " pez,
AN /
to\ / o(Zto)
Zt,
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is commutative. In this diagram ¢: F'G — id is the canonical morphism.
Since ¥ satisfies (C4) and since ¢, = p(Zt,)(F's,) we obtain Fs,e¢ ¥ and
hence s, € &.

We finally show that s, is a largest element of &(A4). Given
s€ &(A) there exists b: FZs — Zt, with b(Fs) = t,. Denoting by

a: Zs — GIt,

the unique morphism such that

FZs— 1, Gz,

N /
b\, o2t
VAN

commutes we conclude t, = @(Zt,)(F(as)) and hence as = s,. But this
means s < s, in &(A4), and thus s, is a largest element of &S(A).

The preceding proposition shows that the inverse image under a
functor F with right adjoint of a class ¥ satisfying (C4) and (II) again
satisfies the same conditions. The next propositions state a similar
result for the property (III).

DEFINITION 1.5. Let 2 be a category, & a class of morphisms of
9, and A an object of %A. Then A is called S-injective if for all
se & A(s, A) is surjective.

This notion is due to J. Maranda [7], and has been reintroduced
by S. Eilenberg and J. C. Moore in [3] in a slightly different form.

ProprosiTION 1.6 Let % be a category, M a class of objects of
A, and S(IM) the largest class of morphisms of A such that all 4¢n
are S-injective. Then &S(M) satisfies (C1), (C2) and (C4). If, in addi-
tion, & is pointed then (CO) is also satisfied.

The proof is obvious.

The preceding proposition implies in particular that the class of
morphisms of an injective structure on 2 (in the sense of [7]) satisfies
(C1), (C2), (C4). If A has enough S-injectives, i.e, if for every

A c ObY

there is an s e & with S-injective Zs, then the closure & of & in the
sense of [7] is the class of morphisms of a unique injective structure.
Under these hypotheses & coincides with & if & satisfies (C4).

The next proposition has first been shown in [3] in the pointed
case, and expresses the fact that right adjoints of exact functors
preserve injectives.
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ProposITION 1.7. Let F: % — € be a functor with a right adjoint
G: € — %, and let T be a class of morphisms of € satisfying (C4) such
that € has enough Z-injectives. Then with &: = F~'Z, % has enough
S-injectives.

Proof. Since F and G are adjoint to each other we have
A(s, GC) = G(Fs, C)

for every object C in € and every sc & where the isomorphism is an
isomorphism in the category of morphisms of the category of sets.
Especially if C is Z-injective then €(Fs, C) and hence (s, GC) are
surjective for every se€ @& = F—', and GC is &-injective. Thus G
maps ZT-injectives to S-injectives. Finally, if A is an object in U
and t e I(FA) with T-injective Zt then the unique morphism

$: A—— GZt

such that the diagram

Fa—  pez
AN /
B, ez
7t

is commutative lies in &, and GZ¢ is S-injective. Hence U has
enough S-injectives.

Under the assumptions of the preceding proposition both & and
are the classes of morphisms of injective structures.

At last one can form new classes & by means of intersections.
In detail we obtain the

ProposiTION 1.8. Let U be a category and &,, A e 4, a family of
classes &, of morphisms of A. Let &: =N, S,.

(i) If all &, satisfy either one of the properties (CO)-(C4) then
so does ©&.

(ii) If all &, satisfy (C4) and (II) resp. (III) and if U has direct
products then & also satisfies (II) resp. (III).

Proof. (i) obvious.

(ii) (a) Assume that all &, satisfy (C4) and (II). Let Ae ObU
and assume that for every ne 4 s, &,(4) is a largest element. Let
s: A— Tlies Zs, be the unique morphism with components s,. Since all
&, satisfy (C4) the morphism s is contained in &. Since all s; are
largest elements in &;(A4) the morphism s is a largest element in &(4).
Hence U satisfies (II).
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(b) Analogously, one shows that (C4) and (III) for the &, imply
(C4) and (III) for &.

COROLLARY 1.9. Let U be a category with direct products,
F;.:S)I—>@;.,>\JGA ,

o fomily of functors and for every e A X, a class of morphisms of
€,. Assume that for every ne A the hypotheses of 1.4 resp. of 1.7
are satisfied. Then &: = N, F;7Y(¥,) satisfies (I1I) resp. (I1I).

2. S.exactness.

DeEFINITION 2.1. [8]. Let A be a pointed’category and & a class
of morphisms af . A sequence A’ 2,42, A" is called G-exact
if a’'a =0, if Coka exists, and if the unique morphism s: Coka — A"
with s (coka) = ¢’ is an element of &,

If, in particular, & is of the form &(IM) where M is a class of
objects of & (see 1.6) and if A’ CLA— A" is a complex such that
Coka exists then this sequence is &-exact if and only if for all M e M
the sequence

Wa, M
A(A”, M) — (A, M) = oqcar, i)
is exact in the category of pointed sets. This gives the connection
with the exactness definition of [3].

DEFINITION 2.2. Let U be a pointed category with a class & of
morphisms of A satisfying (C3), and T A — B a functor into an Abelian
category B. Then T is called &-half resp. ©&-left exact if for every

s €& the sequences

TQs -2, 775 L%, PCoks

resp.

0 — TQs—22, T75 LK%, PCoks

are exact.
If T is &-left exact then T transforms every &-exact sequence

0 A A A”

into an exact sequence

0 TA TA TA"
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If T transform & into Mon B (the class of all monomorphisms of B)
then TA = 0 for every A in 2 such that 0: A — 0 is in &.

For the remainder of this paragraph we assume that 2 is an
additive category” and & a class of morphisms of U satisfying (CO)-
(C3).

We list some properties of & and S-exactness which will be used
later on.

2.3. If a is any morphism of 2 then its graph
I = (id, a): Qa — Qa @ Za
is an element of &. This follows from the fact that the diagram

O——0—> Za

0 (0, id)
QOlL _fe ga D Za

is cocartesian. Especially for every A4 and A’ in ObA the canonical
injection (id,0): A— A@ A’ is in &. Also all isomorphisms lie in &,
2.4. If s and ¢t are in & then so is s@¢. Since
(s@®t) = (sDid)id D)

and by (Cl) we need only show s@ide®&. But for every A e ObAU
the diagram

Qs % . Zs
mnj l j{inj
@A @A

is cocartesian

FirsT IsoMORPHISM THEOREM 2.5. Comnsider a commutative

Qa—g—aZa—> Coka — 0

Ll

Qa — Zs — Coksa — 0

SO

Za — Zs —— Coks —— 0

l

0

2) As in [5] we assume that there are finite direct sums in an additive category.
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with exact rous and se¢ S, Then re & and the last column is exact.
The exactness of the last column is standard. The upper right square
is cocartesian, and hence r¢ & since s € &.

2.6. Let AcOb¥U,acA(A), and sec&S(A). Consider the exact
sequence

(a, s)

495 ze @ 7s L, Cok(a, s) —— 0 .

(The existence of Cok(a, s) follows from (C3) since (a, s) € &.)
Then g, € &.
This follows from the cocartesian diagram

A S

— zs

—a e

Za —*1 Cok(a, s).

v

3. Universal definition of S-satellites and &-derived functors.
Let A be a pointed category and & a class of morphisms of U satisfy-
ing (C3) with id,e® for every AcO0dU. We denote by Q resp. Z
resp. Cok the functors from the category & into 2 mapping an s€ &
to its domain Qs resp. its codomain Zs resp. its cokernel Coks. Let
B be an Abelian category.

An & — §-functor (see [5], Ch. 2) is a tripel 7' = (T°, T",0;)® of
pointed functors T°, 7T": U — B and a functorial morphism

os: T°Cok — T'Q

such that the sequence

T9Z — T'Cok —s TVQ —— T'Z

is a complex. The & — j-functors form a category in an obvious manner.

An & — d-functors T = (T°, T*, 0;) is called universal if for every
& — j-functor U = (U, U*, 6;) and every morphlsm 8% T°— U° there is a
unique morphism b: T — U extending »°. If T'= (7", T*, §;) is universal
then T is determined by T° and by its universal property up to isomor-
phism. For every pointed functor T: U — B for which there exists a
universal & — d-functor with first component T we choose a particular
one, (T,S'T,0,), and call S*T the first satellite of 7. The maps

8 Here and at other places of this paragraph and of the whole paper one
encounters the usual set-theoretical difficulties which can be avoided by the customary
methods.
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T s (T, S'T, 3z) and T~ S'T

are functors® defined on a suitable full subcategory of the category
of all pointed functors from 2 to B. Inductively or by a corresponding
universal property we define the higher satellites S*T of T. We call an
& — d-functor (T°, T, 0) S-exact if for every se & the sequence

TQs — T"Zs — T°Coks - T'Qs —— T"Zs —— T'Coks

is exact in B.

A triple T = (,T,,T, p3) of pointed functors ,7,,7: A —B and a
morphism ps:, T — T is called a & — p-functor if for every se & the
sequence

£7(s)
Ke, Ts — ;TQs ———— ,TQs
is a complex. The & — p-functoArs again form a category with obvious
morphisms. An & — p-furlctor T = (,T,.,T, p7) is called universal if
for every & — p-functor U = (,U, ,U, o) and every morphism

b T — U

there is a unique extension b: 77— U of b, If T =(T,,T, 0#) is
universal then 7' is determined up to isomorphism by ,T and its uni-
versal property. For every pointed functor T: U — B for which there
is a universal & — p-functor with first component 7' we choose a
particular one, (T, MT, p,), and obtain the functor T~ (T, MT, pr).
The pair (MT, 0,) has, in particular, the universal property that every
morphism f: T— T” where 7" transforms & into Mon B factors uniquely
through p,. If MT itself maps & into Mon B then the pair (MT, o,)
is determined, by both 7T and the latter universal property, up to
isomorphism, and we obtain the functor

M T —— (MT, o)

mapping any T such that (T, MT, o,) exists and such that MT trans-
forms & into Mon B to (MT, py). In this case MT is called the
universal S-monofunctor of T.

Finally, we call a triple

T = (Tm T, @f’)
an & — g-functor if T, T,: A — B are pointed functors, if
@5 KeTcok — T,Q

is a morphism of functors defined on &. Since for every morphism
a: A — B the diagram
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ppGd )
T.A—22 |, KeT,cok (id,) ——— T,A
B | [

A ‘d
T,B — %, Ke Tcok (idy) -2, T.B

is commutative @7 gives rise to a morphism @;: T, — T,. Again, the
& — p-functors form a category, and we have the notion of a universal
& — @-functor. For every pointed functor 7: % — B for which there
is a universal & — @-functor with first component T we choose a
particular one, (7, RT, ¢,), and obtain the functor 7'~ (T, RT, o).
Moreover the pair (RT, %,) has the universal property that every
morphism f: T— T" where T’ is &-left exact factors uniquely through
pp. If RT itself is &-left exact then (RT, &,) is determined up to
isomorphism by both T and the last universal property. In this case
RT is called the 0-th &-derived functor of T, (see {4], Ch. II). We
obtain the functor

R°:T—~—-RT

mapping any T such that (T, RT, ¢,) exists and that RT is &-left
exact to RT. The satellite R*T: = S*"R°T of R°T is called the n-th
derived functor of T. If M°T and R°M T exist then R°M°T = R°T.
This remark is usefull since we can often show the existence of M°T
and that of R°7T" provided 7" transforms & into Mon 2.

ProrosiTiON 3.1. The functors

T~ (T, S'T, 6y) resp. T~ (T, MT, o) resp. T~ (T, RT, ¢r)

are left adjoint to the functors which map any & — d-resp. & — p-
resp. & — @-functor into its first component. Hence they commute
with direct limits. The same holds true for the functors

M°, R*, S", n = 0.

All the above introduced functors depend functorially on &. We
use an index to distinguish notions with respect to different classes &.

If 9 is additive we complete the above definitions by requiring
that the functors are additive.

4. Existence theorems.

REMARK 4.1. Let B be an Abelian category and I a preordered
cAlass. We do not assume that I is a set. Nevertheless direct systems
B = (B,, B;;) over I of objects B;, 1€ I, in B and morphisms
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Bji:Bi_'_)Bjy ?' éj ’

with the usual compatibility properties are well-defined. If an object
B together with morphisms 5;: B; — B has the universal property of the
direct limit we write

(By Bb) = }EI_IL (Bu 18.7'1') .
I

The map B - B is again a functor.?

The reason for considering such direct limits over classes is that
we do not want to restrict ourselves to small domain categories as is
done in [1] since for applications smallness is impractical.

For the remainder of this paper we assume that 2 is an additive
category, & a class of morphisms of U satisfying (CO)-(C3), and
B an Abelian category. All functors are additive functors from
A to B.

Let T: A — B be an additive functor. For s ¢ & one has the exact
sequence

s

Zs 222, Coks 0.

Qs

This sequence gives rise to a commutative exact diagram

0—KeTs—, 7Qs-*, CoimTs—0
inj

0—Ke Teoks— TZs— %8, PCoks 2", Cok Teoks—0 .

We define
,T: = CoimTs T,: = KeTcoks, and T°: = CokTcoks .

LEMMA 4.2. (i) Let s,te S and acA(Qs, Q) such that s < ta in
A(Qs). Then there are unique morphisms

WT@):,T— T, T.(a): T,— T, and T*(): T*— T*

such that for all b with bs = ta the diagram

TQs T T, TZs TCoks ———— T*
lTa L;T(a) 1Tts(a) lTb jTCok(a, by ths(a)
TQt T T, TZt TCokt ———— T

18 commutative.

8 Here (a, b)ES(s, ¢) and hence Cok(a, b) is the unique morphism with Cok(a,b)
cok s = (cok ¢) b.
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(ii) Assume in addition ue® and o € WQL, Qu) with t < ua'.
Then the compatibility conditions
wL(@), T(a) = o, T(@'a), ,, T(idg,) = id
T.(@)T(a) = T (@), T, (idy,) = 1d
T*(a)T*(a) — T“(a'a), T*(idy,) = id
hold.

The proof is essentially contained in [2, Ch. 3, pp. 34-35]. In
particular, for every Ac Ob and s < t e &(A) we define

oLt =, T(@d ), Thyt = Ty(idy), T*: = T (id )
and thus obtain the direct systems
T, .. T, s€S(A)),(T,, Ty, s€ S(A)), and (T*, T*, s S(A))

over the preordered class &(A4).

We first investigate the existence of the first satellite and prove
a theorem generalizing and sharpening the existence theorem of [1].
If 7=(T, T, 0) is an & — o-functor denote by Ts se®, the unique
morphism satisfying 7 (cokTecoks) = 8(s).

Obviously one has T¢T# = T* for s < t.

THEOREM 4.3 [8]. (i) Let T = (T, T, 8) be an & — d-functor, and
assume that for all A e Ob

(4.4) (T'A, T*) = lim (T°, T*, sc &(4)) .

Then T is a universal & — d-functor.
(ii) Let T be a functor, and assume that for every Ac Ob2l the
direct limit of the system (T°, T*, sec S(A)) exists. Define

(T4, T%): = lim (T*, T*, s € &(A))
—_—
o(s): = T (cokTecoks) and 0: = (6(8)),es -

Then T becomes a functor in a natural way such that (T, T?, d) is a
universal & — o-functor, i.e. the first satellite S'T of T exists.

Proof. (i) Let U = (U, U, 6) be any & — -functor, and let b:
T— U be a morphism. The existence of a unique b': T*— U* such
that (b, v): T— Uis a morphism has to be shown.

For all AecOb& and s <t¢ in S(A) we obtain a commutative
diagram
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T7Zs ~——— TCoks ——— T'* _

a e /l/f\:T STjA
TZt ——— TCokt ——— T* 1 E e
l /ULZS— ]-» }ICloks~ I —»/UQ)S !

| | | _z U4

Uzt ——— UCokt ——— U?

in which the vertical morphisms of the back-resp. front surface are
b(Zs), b(Coks) and Cok(b(Zs), b(Coks)) resp. b(Zt), b(Cokt), and Cok(b(Zt),
b((Cokt)) and in which b'(4) is the unique morphism with

b(A)T* = U*Cok(b(Zs), b(Coks)) for all seS(A) .

The unique existence of b'(A) is a consequence of condition 4.4.
But b': = (b'(A))secony; is indeed a functorial morphism. For let
acA(A, B). For every sc&S(A) we choose a commutative diagram

8

A — 7S
azja N Ztl(s)

with #(s) e &(B). The existence of such a diagram follows from 2.6.
We then obtain diagrams

T'Coks T T'A
/ / } /
:/ :/ /Tla bi(A)
TCokt(s) —— TH ——— T'B
{ ! ’ l bl(B),
U Coks U: U'A
|7 |7 | 4
Ve Ve /Ula
U Cokt(s) —— Ut ———— U'B

in which all partial squares up to that of the right hand surface are
commutative by construction. Especially

Y(B)(Ta)T* = (U'a)b'(A)T* for all seS(A)
which again implies
b(B)(T'a) = (U'a)b (4) by 4.4)
ie. b: T'— U*

is a morphism.
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The compatability of (b, ') with 6 follows from the construction,
the uniqueness of b is again a consequence of 4.4.

(ii) This part of the theorem is proven with the same method as
in (i).

Under stronger assumptions on & the preceding result can be
sharpened.

PRrOPOSITION 4.5. [8]. Let T = (T, T* d) be an exact & — J-func-
tor. Assume that 3B has exact filtered direct limits ((AB5) of [5]), and
that the classes of subobjects of the objects of B are sets. Then T
is universal if and only if for all 4 e Ob the relation

T*A = Sup Imad(s)

s€RS(4)

holds.

Proof. We remark first that under the assumptions of the pro-
position the supremum of a family of subobjects B, of a given object
B of B, indexed by any class 4, exists. Define namely B, = Sup;e. B;
for every subset 4'c 4. Then from obvious set theoretical reasons,
these B, become stationary, i.e, there is a subset 4; of 4 such that
B, = BA(,) for every A’ = A;. This B"é is the supremum of the B,.
Especially, Sup,egs) Imd(s) exists in T14.

Using this remark and that for every A e Ob2 there is a filtered
subset &'(4) of &(A4) such that

Sup Imd(s) = Sup Imd(s)

s€G(4) SEG(4)

= lim (Imé(s), inj, s € &' (A))
B —
= lim (T, T*, sc&'(A))
e
= lim (T, T, s e &S(A))
—_—
the asserted result at once follows from the preceding proposition.
In a similar fashion we obtain existence theorems for & — p-functors.

If T=(T,T, o) is an & — p-functor and s € & denote by , T the unique
morphism rendering

_* @—>) TQs

N\ /
can\ /,;
T

TQs

commutative. For s <t in &(A) we obviously have 1.7 =,T.
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THEOREM 4.6. (i) Let T = (T,.T, p) be an & — p-functor. Then
T is universal if for all Aec ObS

(T4, T, se&4) = lim (T, ,T,secSA)).
—_—

(ii) Let T be a functor. Assume that for every AecOb the
direct limit of (,T,.T,sc®&(A)) exists. Define

(MTA, T, se&(4)) = lim (,T,,.T, scS(4))

op(A): = ,Tcan, where s is any element of S(A) and can,: TA— T,
and 0: = (0(A))seory. Then MT is a functor in a natural way such
that (T, MT, p) is a universal & — o-functor.

The proof is analogous to that of Theorem 4.3 and left to the
reader. The assumptions of Theorem 4.6 can be verified under addi-
tional assumptions on B,

ProrosiTiON 4.7. Let T be a functor.
(i) Assume that for every A e Ob2 the supremum of the subojects
KeTs, se &(A), of TA exists, and that for every morphism b: TA — B

b(SupKeTs) = Supb(KeT’s)

holds. Then the direct limit MTA of (T, T, sec &(A)) exists, and is

equal to TA/Sup, KeTs.
(i) Assume in addition to the hypotheses of (i) that for every

ac® we have

(Ta)™* (SupKeTs) = Sup (Ta)™* (KeTs).

SESZa) SEG(Za)

Then the functor MT transforms & into Mon 9B.

REMARK 4.8. The assumptions of (i) always hold if B has arbitrary
direct sums, and the classes of subobjects of objects of B are sets.
If in addition B has exact filtered direct limits then also (ii) holds.

Proof of Prop. 4.7. (i) For AcOb¥ and teA(4A) consider the
commutative exact diagram

mj

0—> KeTt M, 742, T —_—0

o | l

0 — SupKeTs —> TA —— TA/SupKeTs — 0 .

3€G(4)

Let then b,: ,T— B be a family of morphisms compatible with the
wT. These b, at once determine a b': TA —— B such that b = b,y,,
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and hence b'(KeTs) = 0 for every se &(A4). This implies
b’(SupKeTs) = Supb/(KeTs) = 0.

Therefore there is a unique morphism b with & = by, Hence

TA/SupKeTs = lim (T, T, scS(4)) .
s _>

(ii) We remark first that
(Ta)(KeTs) = KeTsa for se&S(Za) ,
and that the class {sa|se&(Za)} is cofinal in &(Qa), so
Sup (Ta)"'(KeTs) = Sup KeTt .

SEG(Za) tES(Qa)
But the condition

(Ta)*(SupKeTs) = Sup(Ta)(KeTs)
obviously implies that

TQa/SupKeTt = TQa/(Ta)* (SupKeTs) — TZa/SupKeTs
te@(Qa) BE@(ZII) s
is a monomorphism, hence the assertion.

The important feature of the preceding theorem is that the ex-
istence of MT can always be shown if only B has good enough pro-
perties which is mostly the case in applications.

Finally we obtain the existence theorem for & — g-functors.

THEOREM 4.9 (i) An & — g-functor (T, Ty, p) is universal if for
all AeOb

(T\A, p(s), s € &(A4)) = lim (T,, T.,, s€ &(4)) .

(ii) Let T be a functor. Assume that for every AeOb the
direct limit of (T,, T,,, s € A(A)) exists, and denote it by (RTA, o(s),
seW(4)), and @: = (P(5))seg-

Then RT becomes o functor in a natural way such that (T, RT, @)
1s a universal & — o-functor.

Again the proof is analogous to that of Theorem 4.3.

5. Exactness. Again we are given U, & and B as in §4. Assume
that in addition to the class & we are given a subclass & of & with
the following two properties:

(C'1) For every A c Ob2 the class &'(A4) is cofinal in &(A).

(C2) If se&(A),teS(A), and s < ¢, then t e S'(A).

Assume now that T % — B is an additive functor such that for every
A cOb¥ the direct limit of (T'®, T, sc S(A)) exists.
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DeriNiTION 5.1. The functor lim is called (T, &, é)-exact® if the
following condition holds: Given the following data
(a) a complex A, 2, A, LN A,
(b) a filtered class I
(¢c) order preserving maps
a;: I— &(4,),x=10,1,2

satisfying
(1) a,,(?) £ a,(i)a; for x =1,2 and 7e1
. . TerDagld)  Tagliay(@ . .
(ii) To® e T T oe) T« exact for 1€l

(ili) the images Ima; of all three «; are cofinal and contained
in &, or Ima, and Ima, are cofinal and contained in & and
[ Ima,| =1, or Imea, is cofinal and contained in &, |Imea,| =1, and
A, = 0 then also the sequence lim T %) — lim T — lim T*" is exact.

—_ —_—

THEOREM 5.2. Let T: A —B be an additive functor and & a
subclass of satisfying (C'1) and (C’'2). Assume that

(i) for every AcOb¥ the direct limit S*TA of (T*, T*, seS(A)
exists,

(ii) T is S-half exact, and

(iii) lim ¢s (T, &', d)-exact.

Then (T, S*T, 0) is exact, i.e. for every a €S the sequence

TQu — TZa —> TCoka —— S'TQa — S'TZa — S'TCoka

18 exact.

Proof. (1) Exactness of the sequence TZa — TCoka — S'TQa.
' For every s € &(Za) consider the commutative diagram with exact rows

Qo —2> Za —£ — Coka — 0
J ls u:lu(s)
Qa =% Zs 2=, Coksa — 0
(5.3)% l l l
a P
Za s Zs Coks — 0
|
0

5 We use the word (7, ®, §)-exact since the exactness depends on 7 and &'
and is used for s-functors. Later on we shall also introduce the notions of (7, &/,
o)resp. (T, S, p)-exactness.

©) The morphisms u(s) and u(s) of this diagram obviously depend on s. We
shall shortly write u resp. v instead of u(s) resp. u(s) where this cannot lead to errors.
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The last column is exact, and u(s) e S by 2.5. This diagram gives rise

to the commutative exact diagram

Qa 2, Za 2, Coka — 0

of e ]

Zs ™, 7s@Coka 2% Coka — 0

—-vl l(—u, u)

Coksa =—= Coksa

l l
0 0

since the upper left square is cocartesian; this in turn implies the
commutative exact diagram

TZa —— TCoka

l

TZs— T Zs@ TCoka 2> TCoka — 0

- Tvl l('— Tv, T’LL) l

0—— TCoksa=TCoksa —— 0

since T is &-half exact. By Lemma 3.3, Ch. 3 [2], there results the
commutative exact diagram

TZ0 — TCoka —— T

N 7
can\/TWW‘
Ta

where 0 is the connecting morphism from this lemma. The com-
mutativity is easily verified. Hence T“** is a monomorphism for all
se®(Za). For every tc&'(Qa) let now a,c &(Zt) be uniquely deter-
mined by the cocartesian diagram

Qa—?—a Za

it ls
a;
Zt — Za P Zt
Qa
where se @ by (C2). Hence also T°— T is a monomorphism for

every tc &' (Qa). Moreover the class {ait |t € &'(Qa)} is cofinal in &'(Qa)
by (C'1) and (C’'2). Hence since lim is (T, €', 6)-exact we obtain that
B
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T ——1lim T% = S'TQa
t

is a monomorphism, and thus
b
TZo —— TCoka — S'TQa is exact .

Moreover we get at once for every A and s <t in &(A) that the
morphism 7% is a monomorphism; for the diagram

o=, 5114

el

Tt— S'TA
Tt
is commutative, and T is a monomorphism by the preceding proof.
(2) Exactness of S'TQa — S'TZa — S'Coka.
The diagram 5.3 from (1) gives rise to the commutative exact diagram

Qo ——s Za —t Coka —— 0

sa (s, v8) %
Zs —2, 7s & Coksa 2 Coksa
((—v, id),

£DTOj) o

Coksa nd, Coksa & Coks proj C(;ks —0

-V

0 0 0

Here also (s,vs) € & by §2. Since all rows are exact, and the bottom
row splits, and since the outer columns are exact, also the middle
column is exact. This is seen by applying the functors A(?, 4'),
A’ c 0bY, to this diagram, and proving the dual result for Abelian
groups. Since T is &-half exact, and by Lemma 3.3, Ch. 3 [2], we
obtain the commutative exact diagram

T Coka

0— TZs -, TZs@ TCoksa 2% TCoksa — 0

. (=T, id),
v (Tp) prog) Te

(5.4) 0 —— TCoksa — TCoksa @ TCoks 2> TCoks —— 0

T(s,ys)sa(a)

,
, T

u(8,vs) d
T (1) T 0

Tsu
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Let now I be the class of all (», s, t), r € &'(Qa), s € &'(Za), t ¢ &'(Coka)
with 7 < sa and w(s) < ¢, preordered componentwise, Since T is a
monomorphism by 1) we obtain an exact sequence

Tsa > T(s,y(s)s) > T

for every (r,s,t)el. But since r < sa and s < (s, v(s)s) the mor-
phisms sa resp. (s, ¥(s)s) are contained in &'(Qa) resp. &'(Za) by (C'2).
Moreover the classes

{sa | (r,s,t) € I} resp. {(s, v(s)s) | (r, s, t) € I} resp. {t|(r, s, t) € I}

are cofinal in &'(Qa) resp. &'(Za) resp. &' (Coka). Hence since lim is
—_
(T, &, 0)-exact we obtain the exact sequence

lim T = S'TQa —— lim T@>#® = S'TZq —— lim Tt = S*TCoka .
e — —_—_ e
(3) Exactness of the sequence TCoka — S'TQa — S'TZa.
The commutative diagram 5.4 gives rise, by Lemma 3.3, Ch. 3 [2], to
the commutative exact diagram

TCoka —= T* > 0
lcan lT‘MJ“ l
KeTp ad Ta T (s,v8)3a (g) Tise)

0

where 0 is the connecting morphism from this lemma. The com-
mutativity is easily checked. Hence if we use s < (s,vs) <s we
obtain the exact sequence

T®— T** —— T for every sc &' (Za) .
Analogous to (2) there results the exact sequences
T*— S'TQa — S*'TZa ,
and then also
TCoka —> S'TQa —- S'TZa .

Similar but easier proofs show the following two theorems.

Let again 7: A —— B be an additive functor, and assume that
for every Ac0bU the direct limit of (T,, T,,, s € &(A)) exists. Then
lim is called (T, &, p)-exact if the following condition holds: Given

the data (a), (b), (¢) from 5.1 satisfying
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(i) asin 5.1

.. Ty (i)agir(@s) Tagiirays)(az) .
(i) Topy —— Toysy —————— T,y exact for iel

(ili) the images Ima; of all three «; are cofinal and contained
in &, or A4, =0,|Ima;| =1 and Ima, cofinal and contained in & then
also the sequence

lim T, (1) — lim T, (3) — lim T,,(7)
—_ —_— —_—
is exact.

THEOREM 5.5. Let T: W —— B be an additive functor, and &' a
subclass of & satisfying (C'l) and (C'2). Assume that
(1) for every AcO0b the direct limit RTA of (T,, T,,, s € S(A4))
exists,
(ii) T transforms & into Mon B, and
(iii) lim s (T, &, p)-exact.
B —

Then RT is S-left exact, and T —z» RT is a monomorphism, and
hence RT = R°T 1s the 0-th S-derived functor of T.

The proof also uses the diagram 5.4 of the proof of Theorem 5.2,
and is left to the reader.

Finally if T: % —— B is an additive functor such the direct limit
MTA of (,T,., T, sc®(A)) exists for every Ac0b and if & is a
subclass of & satisfying (C’1) and (C'2) we call lim (T, &, p)-exact if
the following condition holds: 7

Given a morphism a:A,—— A,, a filtered class I and order
preserving maps «;: I—— &'(4,), » = 0,1, with cofinal image satifying

(1) a,t) £ a(i)a for iel

(i) 0T authaon 1@ oy T Monomorphism
then also lim ,;T—— lim, ;T is a monomorphism.

— —_

THEOREM 5.6, Let T:A —— B be an additive functor, and &'
a subclass of satisfying (C'1) and (C'2). Assume that
(i) for every Ac0bY MTA = lim(,T,, T, scS(A4)) exists, and
that
(ii) lim s (T, &, p)-exact.
E—
Then MT transforms & into Mon B, and hence M°T = MT.

6. Application to special cases. We apply the general theorems
of the paragraphs 4 and 5 to the three special cases mentioned in the
introduction.
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Case (1). Let T:%—— B be an additive functor.

DEFINITION 6.1 (see [9]). An object N in U is &S-T-injective if
and only if for all se &(N) the sequence TN — T'Zs —— T'Coks — 0
is exact.

ProOPOSITION 6.2 ([9]). The class of &-T-injective objects in 2 is
closed under finite direct sums.

Let then &' be the class of all ¢e¢ & such that there is an se¢&
with &-T-injective Zs and s < ¢t. Obviously &' satisfies condition (C’2).

PROPOSITION 6.3. Assume that 2 has enough &-T-injective objects,
i.e. for every A € 0b there is an s € S(A4) with &S-T-injective codomain.

(i) (a) For every Ac0bA the class &'(A) is cofinal in S(4),
i.e. & satisfies (C'1).

(b) For every Ac0b¥ and s <t in &'(A) the morphism T*
is an isomorphism. Hence lim (T¢, T*, sc &S(A)) exists, and lim is
(T, &, 0)-exact. — -

(ii) Assume that T transforms & into Mon®B. Then for every
AcO0bW and s<t¢ in &(A) the morphism T, is an isomorphism.
Hence lim (T,, T,,, s € &(A4)) exists, and the functor _]ﬂ is (T, &, p)-

—_—

exact.
As an immediate consequence of the preceding proposition and
the Theorems 4.3, 4.9, 5.2, 5.5 we obtain the:

THEOREM 6.4. Assume that A has enough S-T-injectives. Then

(i) the first satellite ST of T exists. If T is &-half exact,
then (T, S*'T, 0) is exact.

(ii) If T tranforms & into MonB, then the 0-th derived functor
R°T of T exists, and the morphism @: T —— R°T is a monomorphism.

Proof of the proposition. (i) (a) For every se@ there is a
t € &(Zs) with &-T-injective Zt. But then s < ts and ¢s e &'(Qs).
(b) Let s,te&(4). We obtain the commutative exact diagram

0 — A = 4 —0
(s, t) t

inj proj

Zs ——> Zs@ Zt —> Zt — 0

ll

75— Cok(s, t) 2%, Cokt —— 0

l

0 0 0
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where ¢ & by 2.6. If now Zs is &-T-injective then we obtain the
commutative exact diagram

0 — TZs — TZs @ TZt —> TZt — 0

. l

TZs —— TCok(s,t)y — TCokt — 0

(6.5)

Lemma 3.2, Ch. 8 [2], at once implies that T*** is an isomorphism.
If moreover s < ¢, then s < (s,t) < s, and thus 7'*** is an isomorphism.
So T'* is isomorphic for s <t and &-T-injective Zs. By definition of
&’ this result then also holds for all s < ¢, s,te&.

(ii) If T transforms & into Mon B then Te¢ is a monomorphism,
Lemma 3.3, Ch, 3 [2], applied to the diagram 6.5 immediatly shows
that T, is an isomorphism. The remainder is shown as in (i).

COROLLARY 6.6, Hypotheses as in 6.4, If N is S-T-injective
then S'TN =0, If T is &-half exact and S'TA =0 for an object
AcOb¥ then A 1s S-T-injective.

REMARK 6.7. If U is Abelian and & the class of all monomor-
phisms of ¥ then Theorem 6.4, (i) improves the corresponding results
of H. Rohrl in [9]. On the other side the proof given here uses
the ideas of [9].

We finally show the existence of all satellites and derived functors
if the following condition is satisfied (see also [9]).

(C) If se® and Qs and Zs are &-T-injective then also Coks is
&-T-injective.

THEOREM 6.8. Assume that there are enough S-T-injectives and
that condition (C) vs satisfied. Then

(i) every &S-T-injective object ts also &-S'T-injective. Hence,
by induction, all satellites S™T of T exist. If moreover T is S-half
exact the family (ST, o") is an exact S-0-functor.

(ii) 2f T transforms & into MonB every S-T-injective object
1s also S-R°T-injective. Hence all derived functors R"T of T
exist, and (R"T, 0" is exact. Moreover there is a unique morphism
(S"T, 6") — (R"T, 6") extending $: T — R°T.

a

Proof. Let N Za Coka 0 be exact with e & and
&-T-injective N. Let se&(Za) with &-T-injective Zs. We obtain
the commutative exact diagram
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N-%. Zo — Coka — 0
H s u(s)
N2, Zs — Coksa — 0

l

0 —— Coks —— Coku(s) ——> 0

J

0 0 0

where Coksa is &-T-injective by (C) and ¢ is an isomorphism. This
diagram gives rise to the commutative exact diagram

TN 2% TZs — TCoksa — 0

L] l

0—— 0 —— TCoks —s TCoku(s) — 0
which in turn by Lemma 3.3, Ch. 3 [2], implies the exact sequence

TN —> T, Ty —— 0 T T — 0,

Hence we obtain the exact sequence
S'TN = 0— S'TZa —> S'TCoka — 0,
and also the exact sequence
TN = R°TN — R°TZa — R°TCoka — 0
if T transforms & into Mon®B. So N is &-S'T-injective, and also
&-R° T-injective under the additional hypothesis.

COROLLARY 6.9. Huypothesis as in 6.8, (ii). Then one can calculate
the R*"TA for every AcO0bW in the following usual manner: Let

0 1
0—d—spr-*,p %, p

be an S-T-injective resolution of A, t.e. an S-exact sequence with
&-T-injective objects I". Then (setting d~': = 0)

R*TA = KeTd"/[ImTd"* for n =0
REMARK 6.10. If T is any additive functor then M°T exists if

the category B has exact filtered direct limits, and if the classes of
subobjects are sets (see proposition 4.7).
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Case (II). Assume that for every A e 0b2 the class &(A4) has a
largest element. Then define & such that for all 4¢0bYA &'(4) is
the class of all largest elements in &(A4). Obviously & satisfies the
conditions (C'l) and (C’2), and for every A and s <t in &'(4) the
morphisms ,, T, T,,, and T* are isomorphisms for an arbitrary functor
T. Especially, for every A e 0b%(, the direct limits MTA, RTA, and
S'TA exist, and lim is (T, 0)-, (T, &, p)-, and (T, &, d)-exact.
Hence we obtain the

THEOREM 6.11. Assume that for every AecObW the class S(A)
has a largest element.

(i) For any additive functor T: W —> B the functors M°'T,
S*T, R*"T for n = 0 exist.

(ii) The universal S-i-functor (R"T, ") is exact.

(iili) If T is &S-half exact then the universal S-0-functor (S™T, 6™)
18 exact.

Case (III). Assume that 2 has enough S-injective objects. In
this case we can apply Theorem 6.11 since if A e 0b2 and se&S(4)
with S-injective Zs then s is a largest element of &(A4). The derived
functors of any additive functor T: % —— B can again be obtained as
the homology objects of the complex

TI TI* TP — ...

where

0 > A I° I I?

is an S-injective resolution of A.

We remark that under the preceding assumptions the closure & of
& in the sense of [7] is the class morphisms of an injective structure,
and that the satellites and derived functors of a functor T with respect
to & are the same as those with respect to &. Hence without loss
of generality we may assume that & itself is already an injective
structure. Hence one recovers the results of [8] on the existence and
exactness of satellites and derived functors with respect to injective
structures.

REMARK 6.12. Assume that T:% — B is S-left exact. Then
for any short S-exact sequence

00— A -2 At 4 0

the morphism Cok t ——0 is in &. This implies that under the
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hypothesis of 6.4 or 6.11 we have TCok ¢ = 0 and R'TCok p = 0.
Since we also have the exact sequence

can

Coka —— A" 22, Cok ¢t = Coks —— 0

with se & we obtain the long exact sequence

0 — T'Coka —*» TA” — TCokpt = 0 ——
—  R'TCoka ®%8 R'TA” — R*TCokp = 0.
Hence Ts and R'Ts are isomorphisms, and we also obtain the long
exact sequence

Ta O, prar BT gy BT pupgn

0— TA' 2%, 74 T8, pyr

There results that it was no loss of generality that in the definition
of derived functors we restricted ourselves to short S-exact sequences
of the form

8

0 Qs Zs can Coks — 0.

The author thanks the referee for his valuable criticism.
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