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An existence theorem for the elliptic equation Ju — qu = f
can be based on minimization of the Dirichlet integral
Du,uw)=\|Ful|*+ q|ul|*de., The usual assumption that
q(x) = 0 is relaxed in this paper.

Actually the paper deals directly with the general second
order formally self-adjoint elliptic differential equation
Sir DdauDu) + qu = f where q(x) is positive and ‘‘not too
large’ in a sense which will be made precise later. The
technique consists in showing that the quadratic form whose
Euler-Lagrange equation is the P.D.E. above is positive for
a sufficiently large class of functions,

Earlier inequalities of Beesack [1] and Benson [2] show that there
are positive functions ¢(z) for which Sl Fu? — q|uide = 0 for functions
2 which vanish on the boundary of the domain. D. C. Benson suggested
to the author that this inequality might lead to existence theorems
for 4u + qu = f.

Let © = (%, 2, +-- x,) € R*. Let D be an open domain in B™ which
may be unbounded unless the contrary is assumed. Let C~(D) denote
the set of all infinitely differentiable complex-valued functions and
Cy(D) denote the subset of C=(D) of functions with compact support

contained in D. TLet |||} = S S D + ufde and let C=*(D) be
D =1

the subset of C=(D) of functions with |[u ||, < eo. Let Hy(D) be the

Sobolev space which is the completion of C=*(D) under ||« |,. For a

function ¢ of the special type encountered in §1, let HZ(D) be the

Sobolev space which is the completion of C=*(D) under the norm
lully = S IDaf +qlufdo.

Let ﬁl and I;V{’ be the completions of Cy(D) with respect to ||« ||, and
{lu|l,. The reader who is not familiar with the Sobolev spaces can
find a discussion of their calculus in Nirenberg [5].

1. An integral inequality.

THEOREM 1.1. Let D be smooth enough to apply Gauss’ Theorem.
Let a;,(x) be hermitian positive definite, a;, € CY(D), and let fi, f5y »++ fu
be continuously differentiable complex valued functions of z, for all
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xeD. Then

g S au DD, G + (a0 fify + Di(Re a, f)) | u Pd

D i,k=1

7
= S > Re(aufi)|ulv.ds, where v,
D i,k=1

is the k' component of the normal, we CND), and the integral on
the right is assumed to exist. In the case of unbounded D, we will

understand limS S Re(a, fi)|ulvds = 0 for X a sphere of radius
R. FEquality holds if and only if Du = uf;, for every 1i.

Proof. From 3 a,(Du — uf:) (D4 — @f,) = 0, obtain
S anDauDiit + [awfife + & Dulawss + @uf) |lu?
(1) = S a(fuD,g@ + fiiDu) + ED,C(aM fi F @ fo)|ul
= S an fauD@ + % Du(asfi) |l + G faDyu + % Du@nf) wt .

Where the last line was obtained by interchanging the order of sum-
mation and using the symmetry of a;.

Now obtain a new inequality from (1) by taking conjugates of
both sides and interchanging the order of summation in the first two
terms. Add this new inequality to (1) and obtain

Za/chuDku’ + [azkfz k —]—Dk(Rea’zk ]lu‘Z
= Z Dy(|u|*Re a;. 1) -

Now integrate both sides and use Gauss’ Theorem to obtain the desired
result.

DEFINITION 1.1. We will reserve the notation ¢(x) for a positive
function of the form q¢(») = — 3 a,. fifi + Du(Re a. f)).

COROLLARY. If D is any open set in R* and a;,(x) are uni formly
bounded in D, then S Z a; . DuD @ — q|ul’de = 0, for every uc H1
and equality holds if and only +f Du = uf;, for every i, a.e.

Proof. Let us first establish the inequality for any wue C(D).
Let K denote the support of u and 2 denote a sphere containing K.

Let % e C(@) such that & = {g on K and let @, 7, 7 be continu-

ously differentiable extensions of u, f;, ¢ to 2. Then
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D Q2
= |, S Re @) |@wids = 0.
D

Now let |a;(x)| < M for every ¢,k,xeD. For any ueI;Il", choose a
sequence u, € C;° such that ||u — %, ||,— 0.
Then

S S| Do, I'de LS S| Do ['dos
D 1 D
and
|, lun iz = | q|uldo
D D
and we have established that
S SegpDu, D, — q U, fde =0, for every m.
D
We need only show that
S o, D, D, d2 —Zn——>S a;. DD, udx
D D
which follows from
S | @i, | | Dsth Dy, — DiuD, i | d
D
< M| (1Dt |+ Dl — )| + | Dy || Dilaen — w) o
1/2
= M(| 1D rds) (] 1Duw = w)a)
D D
]

+ M(SD | Do |2dx>1/2<SD | Dy, — ) |2da;> "m0,

1/2

After proving three existence theorems, we will give some examples
for choices for q(x).

2. Existence theorems.

THEOREM 2.1. Let q(x) be a function of the special form of
definition 1.1 and let p(x) be a continuously differentiable function
such that 0 < p(x) < (1 — e)q(x), where ¢ > 0 and fixed. Let

g g flide < oo,
D
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g€ H? and let
Av = 3\ DiaDwu) + pu be a
i,k

uniformly elliptic operator. That 1is, a,, 1is hermitian and there
exist positive constants M and N such that |a,(x)] £ M and

A Z &P = ij au iy
3 1,

folr any (El, EZ) M En)-
Then the Dirichlet problem

Au = fin D
=g on D

|, S 1Dl + qlufde < o

has a weak solution and any two weak solutions differ only on a set
of measure zero.

Proof. We must show that there is a function ¢ Hf such that
U —g eIOIf and (u, A*p) = (f, p) for every pc Cy. Here A* denotes
the formal adjoint of A (actually A = A* on the domain of A).
Equivalently, we can set u#, = w — ¢ and consider the problem of
finding u, ¢ I—i‘l such that (u,, A*p) = (f, p) — (g, A*p).

Let

B(u, v) = S a; . DuD, 7 — pub dx

D i,k

= S @ DD, v — pu® de

- S S uDy(@uDi7) + puv do
= —(u, A*v), for every ve C3(D).
We will show that there exist C;, C, > 0 such that
| Blw, v)| = Ciflull, | v]],
and
B(u, u) = C,|ju|?, for every u,ve folf .

For, having shown this, we can apply the Lax-Milgram Theorem which

guarantees that any bounded linear functional F(p) on the Hllbert

space H ¢ can be represented as F(p) = B(u,, ) for some u,¢e H ¢
Take F(p) = —(f, ) — B(g, ), then
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Fo) | = (| e 151d0) (( alpraa)” + Clloll gl

= const || ||, .

So B(u,, @) = —(f, ) — B(g, ) which was to be shown.
To see that B(u, ) is positive, consider

B(u, u) = SD %‘, agDuD @ — | ul|*de

D i,k

= S SagDuDa — q|uPde + eSDq |’ da .

By the corollary to Theorem 1.1, both integrals are positive and,
therefore,

B(u, u) = eSDq |u*de and
B(u, ) = SD SiagDuDi — q|ufde .
Then
(1 + %)B(u, u) = SD S auDaD@ + q | wltde

= | ASIDwl + qlude = Cllul;
with C =min(1,)) .
The positivity of B(u, ) implies

| B(u, v) |* < B(u, u)-B(v, v) so that we need only show that
B(u, w) < const ||« ||2 to see that |B(u,v)| = Cy||wll, || v]l,

Blu, u) < Mg SV DD, | + p | u fde
D 1,k
< Mgpgé(leiz LD ) + plulde

éMnS 2| D+ plulde = Mu|lull; = Mn|lwlf .
D i

To obtain the uniqueness result, let Auw = 0,u ¢ ﬁ{', then

0= —(u, Au) = B(u,u) = C,||u|f} Su=0 a.e.

THEOREM 2.2. Suppose that D is bounded and D is smooth enough
for antegration by parts, that (a,,) is real symmetric positive definite,
that a;, € CA(D), and that |a;(x)| < M, for every v, =1, -+, n and
xeD. Let q@) = — > (@ fife + Di(a fi)) be such that qe CHD)
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and the system

D = uf;
w=0 on D

Let Au = 3. Di(a.Dyu) + qu.

has only the trivial solution.

Au =0 im D

Then the Dirichlet problem R
=9 onD

has a unique solution.

Proof. We use a result of Browder [4] which says that under
the assumptions above uniqueness implies existence. Thus we need
only show that if « is such that Aw = 0 and # = 0 on D, then = 0.
But that is immediate since

B(u, u) = S 2 0aDuDit — q|ufde
D ik
= —(u, Au) =0,

By Theorem 1.1, B(#, ) = 0 only if D;u = uf;. By the assumption,
u = 0.

It will be seen in § 8 that many functions ¢(x) have the required
uniqueness property.

THEOREM 2.3. Let q(x) = —>,; | /i I* -+ Di(Re f;) so that
|, S 1Dal —qlutds 20,
D i

for every we HYD). Suppose that qe C(D) and 0 < m < qx) < M
for every xeD. Suppose that (a;) 1s hermitian and

A Z | &P Z @ ()&
for all xe D, all & and some fixed » > 0. Suppose that a;, € CYD),
b, e CY(D) and a;, b; are bounded im D. Let
Ev = % DiayDwu) + 2. b.Diw + (p(x) — 7 )u
i,k i
where 0 < p(@) < (M — p — e)q(x) for we D,y and ¢ are any fized
positive numbers with p + & <\, and

o =L max b
2€D %

Then the Dirichlet problem
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Euw = fin D
w=gon D
ol < oo

has a weak solution and any two weak solutions differ only on a set
of measure zero. [Note: In the usual theorem of this sort, one
requires 57" = (1/A) max,es [ > b + Ap] so that p(x) — 97 is necessarily
negative. For example, see Hellwig [5].]

Proof.
Let

B(u, v) =

€y

k k

D 1,
- ~| SubieuD) ~ S uD03) + 0 — ST de
= —(u, E*v), for veCy(D).

we will show

| B(u, v)| = Cillwull|]vlh

| Bw, w) | = C, |||t
and the result follow from the Lax-Milgram Theorem by the argument
in the proof of Theorem 2.1.

Recall ¢ from the statement and use the inequality derived from
[(e/2)a — (p/2)7*BF = 0 to obtain for each F,

\biiDyu| < 2 (b [P+ L | Dy .
yZ 4

Liupsiibp+ £ D
7R 1%

= |l + L5 Dap

4 DD — (0 — 9 | u Pds — S 1 S byiiDyu ] de
N D k

D1

NS Dl = (v = &g [ul + S u

N

—%[u\z—%%leude

z(%—#)SD};}DMV—QIulzdxwLSSDqlulzdx-

Since both integrals are positive,
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| B, w2 (= | S|Dul - g|ufds
(B(u,u)[z_sgqlu[zdw.
Let 0 = 2(» — p/e) > 0, then

| Blw, w)| = 35wl = Gl

B, v)| £ const.| S Dau||Dw| + S |vl| D + ulfo|da

= conSt'[z,Zk‘ <Spl D ‘2>1/2<S,,| Dy lz)]ﬂ

e 2 (o) (o) (e (roe)]

< const.[ 31wl llvlh + Slvlh lwfh+ o]

< const. [|u |, [Jv ]} .

3. Examples. Let
q(x) = _E‘#aikfifk + Dl f3)
for real f;, a;.

3.1. Let

12x, 1=1,+..4,8
Qi = Oy f3 = ) 1<s=<n.
0 t=s+1 - m

Then

and the inequality is

Ll

S wlde = 0.
4 =g

Notice that this generalizes the well-known inequality
SD |l e < 4;5251) SIDulds,  we i, ,
where ¢t = min,g;g, Max, ep| %

In particular for s = 1, Theorem 2.1 solves the Dirichlet problem
for Adu 4 p(x)u = 0 where 0 < p(z,) £ ((1 — ¢)/42}) and the plane ¢, = 0
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is not in D. This differential equation has an application in Generalized
Axially Symmetric Potential Theory where solutions of

9 n—z?l) i<n-z<3’_u)=o
ox <y ox + oy y oy
are sought |(see [7]). If we let u = y=*" 29, we obtain

(n — 2)(n —4)

1y v=20

Voo + Vyy —

and 0 < (—(n — 2)(n — 4)/4) < 1/4 when 2 < n < 4.

It sometimes happens that equations of mixed type, that is equa-
tions which are elliptic in one part of the plane and hyperbolic in the
complementary part can be transformed into equations which are elliptic
but which have singular coefficients. The Tricomi equation wyu,, +
u,, = 0 is of this sort. If we let z = 2/3%** we obtain u,, + u,, -+
(1/32)u, = 0. Now let v = 2"%% and obtain

(%) Vas Vs + o 5V =
Since 5/36 < 1/4, Theorem 2.1 guarantees a solution to the Dirichlet
problem in any domain for which z = 0. In [3], Bergman uses (*) to
study the Tricomi equation by means of his technique of integral
operators. His technique is, of course, limited to two dimensions, but
there are analogues of (x) in any dimension,

3.2,
—8;27”5_ 1<i<s
2
aik:8ik:fi: 1'}::1%
1<ssn
0 s<1<m
Then
_ 9y
gy = L2
43 ot
=

In particular, for s = n = 3, ¢(®) = (1/47*) where » = (3}, )", and

1 1 r-v
wde = — =\ . -
D e

AR
4p® 2

S | P —
D

Notice that the right hand side is positive whenever D is the exterior
of a region which is starshaped with respect to the origin.
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Theorem 1.1 solves the Dirichlet problem for Au + ((1/4 — ¢)/r*)u = 0.
This example shows the value of having ¢ > 0. If we take D to be
the exterior of the unit circle, the function uw = r—*~v% golves Au +
/4 — ¢/r»u = 0 with boundary values w =1 and

/
il = (S 17u12+iu2dx>”< o .
D 4r?

For ¢ = 0, the expected solution of du + (1/4r*u = 0 is u = V2, but
[Jr*2|j2 = o, It is not even clear that the solution is unique.

3.3. Let A = 5iky f= (flf B fn) = ar‘r where r = (xly Ly = o mn)'
Then

S S D P+ (a2 — a(n + tyr'] | 'de > 0
D k
for every ue Iglf.

3.4. Leta;=u%a;,=0fFfori+k, fi=—1/2%;). Then gq(x) = (n/4)
and Theorem 2.1 applies to >, D(xiD,u) + au = f where 0 < a < n/4.

3.5. It is possible to derive from Theorem 1.1 Rayleigh’s charac-
terization of the first eigenvalue of >, Dia;Du) + rMqu = 0,4 = 0
on D, where ¢ > 0 and continuous on D and D is bounded. Let A,
be the first eigenvalue and u, its eigenfunction. Then %, #0 in D
and we may set f; = (D;u,/w,). Then

Sy0aufifu+ Diaafi) = 3, DA0DM) 5,
Let we C2(D) and K be the support of . Then
SK 12]; a; DD — Mgquide = 0
since f;u*e C'(k). Since all the functions are bounded this implies that

S S agDauDu — Mmouide = 0, for every ue Co(D) .
D i,k

Since this is the only conclusion of Theorem 1.1 used in the corollary,
we have this same inequality valid for all we Hy(D). That is,

S e DauDuds
7\11 D ik

A

S quidx
D
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with equality if and only if Du = fiu = (D, /u,)u if and only if
u = ku,.

One can employ the technique of this example to obtain inequalities
whenever a suitable solution of the string equation is known.
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