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We are concerned here with determining some closed
operators associated with a given elliptic differential operator
A of order 2m and some in general nonlocal boundary opera-
tors. We seek conditions in particular which gunarantee that
the result is a normally solvable operator, i.e. with closed
graph and closed range in the sense of Visik., We follow
basically the method used in Bade and Freeman in the sense
that we regard the operator with nonlocal boundary conditions
as a perturbation of an operator with boundary conditions
defined by a normal set of differential operators B =
{By, -+, Bn-1} satisfying the condition of Agmon, Douglis and
Nirenberg (also Browder, and Schechter). Since the basic a
priori estimate valid for such systems essentially says that
the resulting operator has closed graph we call such a system
(A, B) clesable elliptic.

In addition to dealing with higher order elliptic operators
and general boundary conditions we also drop the requirement
that our region be relatively compact and instead make the
weaker requirement that the differential operator in H 2"(Q)
with lecal boundary conditions yields an operator with closed
range. We work here in L? only and consider operators
defined in H**(2), in the graph topology associated with the
so called maximal operator and in a family of spaces inter-
polated between these two. Most of our results can be
obtained, at least for relatively compact regions, in L? with
1 < p < o at the expense of a somewhat more complicated
treatment. A particular complication arises from the fact
that different interpolation methods which yield the same
spaces in L? do not in general in L7, p + 2.

The paper is divided into eight sections the first five of which
are of a preliminary nature and contain results many of which are
variants of well known results.

While in the process of writing this paper we were able to see
the thesis of R. W. Beals which he kindly sent to us. The two papers
are concerned with similar problems but the results cannot be ordered
by inclusion.

1. Preliminaries. As usual points in R* (n-dimensional Euclidean
space) are denoted by x = (x,, ---,2,) and n-dimensional Lebesgue
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measure by dx. We let do denote » — 1 dimensional surface measure,
D; = (1/i)(9/0x;) where 4* = —1 and N denote the nonnegative integers.
If a=(a,- --,a,)e N and & = (&, +--,&,)e R" then || = 3", «a,,
Df =D e Din &% = g1 vee E% and @l = @) --- a,).

If E and F are two topological vector spaces over C the complex
numbers we will use the notation & < F to mean that E is a subspace
of F' and that the topology of E is finer than that induced on F by
F. <7(E, F) will denote the (algebraic) space of continuous linear
maps from £ to F. As is usual &?(F, C) will be denoted by E’.

Using the notation of L. Schwartz [27] we let < (Q) be the space
of infinitely differentiable functions having compact support in 2 and
if =7(Q) is equipped with its usual locally convex topology its dual
space, the space of distributions on £ is denoted by <'(2). In general
if & (Q) is a space of functions on Q then .&# (R") is simply denoted
by % . <7(Q) is the space of restrictions to 2 of functions in <.
& will denote the space of rapidly decreasing functions on R”*. An
element in its dual is called a tempered distribution assuming that .&¥
has its usual locally convex topology.

For ue <(2) and me N we let

m —_ 1
Hwllme = S > (m) s Y| Doy e
250\ [, | 1al=r o!

suppressing the 2 when no confusion is likely to result.
When Q is R™ and if % denotes the Fourier-Plancherel transform

of w then ||u]|2 = g(l + [& ™| 4(&) ’dé which is the reason for all

the factorials. The completion of < (Q) in the norm | - ||,, is denoted
by H™(2) and the completion of < (Q) in the norm || -, is denoted
by HMQ). If Q is R™ the two spaces are the same and their elements
are tempered distributions.

Let 2 be an open set in R” whose boundary " is an infinitely
differentiable, orientable manifold. 2 is not assumed to be relatively
compact but is assumed to be uniformly regular in the sense of Browder
[5, 6]. Let <2” be the open unit ball of radius » about the origin.
Then we assume there exists a covering of 2 by open sets {Q,: 7 € N},
a family of infinitely differentiable homeomorphisms {p;:5 =1, ---}
and a positive integer n, such that

(1) At most n, of the 2,’s have nonempty intersection.

(2) Forj=1,+ 90;:2,N2—>Z"N{y, >0 and ¢p;: 2, NI —

FZ' N Y. = 0} .

(8) The derivatives of ¢, and its inverse are uniformly bounded.

(4) U, ®7(<#*?) covers a uniform neighborhood of 7.

It follows [6] that there exists an infinitely differentiable partition of
unity {»,: j € N} subordinate to the cover such that in a neighborhood
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of each point e I" at most n, of the 7,’s do not vanish. A number
of results usually obtained for compact regions can also be obtained
for uniformly regular regions. In an earlier version of this work we
included the modifications necessary to prove these results for uniformly
regular but not necessarily compact regions. Since that time we have
received a copy of the thesis of R. W. Beals in which detailed proofs
of these results are given. Consequently we do not duplicate them
here. We summarize some well known facts about the spaces H™(Q),
m € N in the following

THEOREM 1.1. (i) If m,pe N and m < p then H?(Q)cC H™Q)
and H?(Q) is dense in H™(Q).

(ii) H™Q) can be tdentified with the space of distributions on
Q all of whose derivatives up to and including order m are functions
n LAQ) = HYQ).

(iii) Let Hr be the closed subspace of H™ comsisting of those
Sunctions in H™ whose support is contained in 2°. FEach we H™Q)
18 the restriction to Q of a we H™ and H™(Q) is topologically isomor-
phic to the quotient space H™/H2 1if the latter space is given the
quotient topology.

(iv) If Q is relatively compact, m, pe N with p > m then the
canonical injection of HP(Q) tnto H™(Q) is compact.

A detailed proof of (ii) appears in Browder [6] and a detailed
proof of the first statement of (iii) appears in Beals [4] and for Q
relatively compact in Lions |[13].

For u e &7(2) we define two more norms

Hullme = sup {| (w, v}, : ve H™(D), || v ][, = 1}
and
HuH—m = Sup {l (u’y ’U)Oii veHﬂm(‘Q)y Hv{im = 1} .

The completion of <(2) in the first norm is denoted by H;™ and in
the second norm by H—™(2). When no confusion is likely to result
we suppress the 2 in the first norm. The space H™(2) can be
identified with a space of distributions on 2 but since </ (Q) is not
dense in H™(Q) this is not true for Hz™. We summarize some well
known facts about these spaces. A proof of the last appears in
Magenes-Stampacchia [21].

THEOREM 1.2. (i) Hz™ (H ™(Q)) s topologically isomorphic to
the dual space of H™Q) (HQ)).
(i) If we H™Q) (H™MRQ)) and ve Hiy™(H ™Q)) the expression
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(u, v), ts well defined and |(w, v)o| =< [[%ln [V [l_m.o ([ %|lm || V]|-m)-
(iii) If m,p are integers, m >p then H-?(Q)c H™Q)
(H7?C H7™) and Hz? ts dense in Hz™ (H=?(2) is dense in H~™(Q)).
(iv) If me N the space H5™ can be identified with the closed
subspace of H~™ consisting of those elements with support contained
wmn 2.

2. Some interpolation results. There are two methods of
interpolating Banach spaces between pairs of Banach spaces which
have been widely used, a complex variable method introduced by
Calderon [7] and independently by Lions [14] and a real variable
method introduced by Lions [15]. Other methods have been discussed
for example in Lions-Peetre [20] and in Calderon [7]. We outline
briefly the first two mentioned methods here for the convenience of
the reader. We summarize below some facts all of which except
possibly the last are well known. We do not know whether the last
statement appears elsewhere in the literature. Its proof is quite
straight forward and we do not include it here.

THEOREM 2.1. Let H, and H, be Hilbert spaces with H, C H,, H,
being dense in H,. Let || -|;(+,+);;d =0,1 denote the norm and
scalar product in H;. Then

(i) There exists a positive-definite, self-adjoint operator T* in
H, with domain D(T?) = {ve H;: for some k(v) > 0 | (u, v),| =< k@) || u ]|,
for all we H}. D(T? is dense in H, and for ve D(T?) and we H,,
(%, V) = (%, T0),.

(ii) T, the positive square root of T? has domain precisely
equal to H, and is a continuous bijection of H, onto H,., For we H,,
1 Tully = [l i i

(iii) T has an extension T to all of H, and T is a continuous
bijection (i.e. an isomorphism) of H, onto a Hilbert space H_, topolo-
gieally isomorphic to the dual space of H,. If for wec H, we set
lwlle = | T |, then ||w ||y = sup{| (w, v): we H, and |||, = 1}.

Since T is also self adjoint, if 0 < s < 1, the powers T° of T can
be defined with the aid of the spectral measure of T (or of T%). They
are also positive-definite and self-adjoint. We make the

DEFINITION 2.2. For 0 < s <1 let H, be the domain of T° and

for we H, set ||uwl|l, = || T*wll,. Let, for ue H,, ||ul|_, = sup{| (%, v),|:
ve H, and ||v]|, = 1}. Denote the completion of H, in the norm || - ||_,
by H_,.

Since T'* is self-adjoint it is closed and since it has also a continuous
inverse it follows that the spaces H,, 0 < s <1 and Hilbert spaces.
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We summarize some of the salient facts about H, in the following

THEOREM 2.3. (i) For —1 =<s =1, H, is a Hilbert space.

(ii) For -1 <s<t=1,H,cC H, H, being dense in H,.

(iil) The map T*® has an extension (T%)” = (T)* to H, and yields
an isomorphism of H, onto H_,. H_, is isomorphic to the dual space
of H,.

iv) Let H,=V, and H, =V, for some 0 < s <1, Construct
the space V,, for 0 < 60 <1, as above. Then V, = H,,.

The last mentioned fact follows easily from the manner in which
the spaces have been constructed and the fact that a self adjoint
operator can have no proper self adjoint extension.

We give now a definition due (with a slight modification in nota-
tion) to Lions [14].

DEFINITION 2.4. Let & (H,,, H,, R.) be the set of all strongly
Lebesgue measurable H, valued functions on R, = [0, <) such that

| ) iz.ae and |7 lw e < <.

THEOREM [Lions]| 2.5. For we & (H,, H, R.) the map u — u(0)
can be defined and is a continuous map of & (H,, H,, R.) onto H,.

Let V, and V, be another pair of Hilbert spaces with V; dense in
V., V.V, and construct for 0 < s < 1 the spaces V,. Then

THEOREM [Ltons] 2.6. If Le &7(H, V,) and in & (H,, V) then
Le ¥(H, V,) for 0 <s <1,

The spaces H,, 0 < s < 1 will be called ¢race spaces.

Now suppose 4, and 4, are two Banach spaces each continuously
embedded in some topological vector space .». Equip A4, + A, with
the norm || a || 414, = Inf ([l ag|[, + [l allsi @ = ao + ;). A, + A, is then
a Banach space. Let 5#(4,, 4,) be the set of maps of the strip 0 <
Rez <1 into A4, + A,, holomorphic in 0 < Rez <1 and continuous and
bounded in 0 < Rez < 1. Suppose moreover that f(iy) € 4,, f(1 +iy) € A,
and as |y | — o [ f(1y) |[4,— 0 and || A1 + 19) |[|,, — 0. Equip S£°(4,, 4))
with the norm || fl. 44y = max (sup, || f(4) || sUp, || A1 + 1Y) ||4)-
Let [A4,, A4, 6(0)] for 0 < 0 <1 be the image in 4, + A, of the map
¢ — f(0) and equip [A,, 4, 6(¢)] with the norm [[a ||, = inf {|| f[[> 4pap:
f(0) = a}. [A,, 4,, 6(0)] is then a Banach space.

Suppose B, and B, is another pair of Banach spaces each continuously
embedded in a topological vector space <. Then
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THEOREM (Lions [14], Calderon [7]) 2.7. If Te < (A, B,) and
Te (A, B) then for 0 <0 <1, Te g7([A, A, (8], [B,, B, 6(6)]).

Let g+ be a finite measure on R* and H, = &*|R.,dy], H, =
YRy, M) then it is easy to see that |H,, H,, 6(0)] is LR, A\dy].
If H, and H, are Hilbert spaces, H, C H, and H, dense in H, and if
£t is the spectral measure of the self adjoint operator T of Theorem
2.1 then there is a unitary map U mapping H, onto L)|R.,\dy] and
H, onto L} R,,dy]. Thus

THEOREM 2.8. If H,, H, is a pair of Hilbert spaces with H, C H,
and H, dense tn H,, then for 0 <60 <1, [H,, Hi, 6(0)] = H,.

DEFINITION 2.9. If s is a real number m <s<m + 1 we let
H*(Q) = |[H™(Q), H"(Q), (s — m)].

THEOREM 2.10. H(Q) for s real, s =0, is isomorphic to the
space of restrictions to Q of elements of H*(R™).

ReEmMARK 2.11. If 0 < s < m we could also define H*(Q) by inter-
polating between HQ) and H™(Q) using Theorem 2.1. By Theorem
1.1, part iii, and Theorems 2.6 and 2.7 the spaces are the same. The
operator T of Theorem 2.1 is the operator (I + 4)™ subject to the
Neumann boundary condition (homogeneous), where 4 = >, Di. If
m = 2p, the operator (I + 4)? with domain H?(Q) is not even closed,
much less self adjoint. Thus the square root of (I + 4)** with the
homogeneous, Neumann boundary conditions does not look like (I + 4).

LeMMA 2.12. Given ¢ > 0 there exists a C(¢) > 0 such that for
0<s<tand uc Q)

Hull, = ellull + Ce) [[ull .

3. Boundary operators. If u e < (2) we define (using the nota-
tion of Lions and Magenes [16]) the map v, by v = u restricted to
I, and set v,u = 7,(0/ov)*w where v denotes the normal to 7.

LEMMA (Ehrling [8]) 38.1. The map v — 7,u s @ continuous map
of =2(2) with the topology induced by H**(Q) into HI") and thus
has a continuous extension to H*(2). If €> 0 there exists a
C(e) > 0 such that for we H* Q) ||V |l = el w]lirs + Ce) [ w[fo.

This is proved using a partition of unity just as in the usual
proof for compact regions. A detailed proof appears in the thesis of
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Beals [4] so we do not include it here.

Since v, is continuous, its kernel is a closed subspace of H™(2)
for m a positive integer. Thus H™(Q)/ker v, is a Hilbert space with
the quotient topology.

DEFINITION 3.2. The image of H™(2) under the map v, with the
topology of H™(Q)/ker, is defined to be the space H™%*(I"). The
norm is written || « ||,_q,r- It follows that v, is a topological homo-
morphism of H™(Q) onto H™ ().

If ©Q is the half space {x ¢ R": x, > 0} so that I is R** and if &’
denotes points in R* and & points in the dual space, then

Hm—(l/Z)(]w) — {fe LZ(F)Z S(l + 5! Jz)m—u/m [f(é-l) szfl < &3}
and

1/2

1 Vo = (@ 5 18 Py @) paz)

Using a partition of unity and local homeomorphisms just as when I~
is compact another definition of H™ *(I") (and in fact H*(I") for s
real) can be given and the two definitions yield the same spaces. It
is worth mentioning that difficulties appear when p = 2, see for example
Lions-Magenes [17].

DEFINITION 3.8. If s is real and m < s < m + 1 define H*(I') =
[H™(), H™*, o(s — m)].

THEOREM 3.4. For s = 0 the space H*(I") coincides with the space
defined in the discussion preceding Definition 3.3.

LemMA 3.5. 2(") ts dense in H¥I).

LeMMA 3.6. Given € > 0 there exisis a C(¢) > 0 such that for
0=s<tand ue 2(),l[7ull, <ellvull + CE) 7l

THEOREM 3.7. Let s > 1/2 be real and m = [s] the greatest integer
<s. The map w— v = (Y, «++, Vm %) 18 @ continuous linear map
of < (2) with the topology induced by H*(Q) onto (17 2 (I") with the
topology induced by TIrg H*—"* (). v can be extended conti-
nuously to H(Q) and yields a continuwous linear map of H* () onto
M7= He==0"(").  The kernel of v is Hg(2).

Now let B,, -+, B,_; be a family of » differential operators with
infinitely differentiable coefficients defined on some open set Q' contain-
ing 0.
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DeFINITION {2] 3.8. The set By, B,, ---, B,_, is called a Dirichlet
set of order = if and only if

(1) B, =b(z)r, + A, where the order of B, is k and the normal
order of A, is <k — 1.

(2) inf{{b(x):0<k<r—1,2el} >0,
A subset of a Dirichlet set the highest order appearing being p is
called a normal set of order p. A set of differential operators having
the properties of a normal set can be extended in many ways to form
a Dirichlet set.

THEOREM 3.9. Let B={B, ---, B,_i} be a normal set of order
M, the order of B; being m;. If s is a real number, s > M, + 1/2,
then the map w— Bu = (Bu, ---, B,_,#) 1s a continuous linear map
of < (2) with the topology induced by H*(Q) onto I['% < (I") with
the topology induced by 7= H*™i—“*(I") and can be extended comn-
tinuously so as to be a homomorphism of H*(2) onto 117 Hs™i—M(["),
If B is a Dirichlet set, the kernel of B is HQ).

4. Closable elliptic operators. Let A = 3, pem D?0s(@)D* be
a differential operator of order 2m with infinitely differentiable coeffi-
cients defined on an open set Q' containing Q. Let

Az, &) = | 2_‘51 G op(@)E°H

DEFINITION 4.1. (i) A is uniformly elliptic if and only if there
exists a number a, > 0 such that for ze 2, | Az, &) | = a, | &|"™.

(it) A is properly elliptic if and only if for each x ¢ I" denoting
by v, the inner directed unit normal to I" at x and 7z, a unit tangent
vector to I" at « the polynomial in v A/«, 7, + \v,) has precisely m
roots with positive imaginary part and m roots with negative imaginary
part. It is known that when n > 2 every elliptic operator is properly
elliptic.

We now introduce a condition on boundary operators associated
with A which has almost as many names as there are authors who
have introduced it. It has been called the complementing condition
by Agmon, Douglis and Nirenberg [1], regularity condition by Browder
[5], and the boundary operators are said to cover A by Schechter [23].

DEFINITION 4.2. Let B = (B,, ++-, B,_,) be a normal® set of boun-
dary operators, the order of B, being m; and m; < 2m. Let B, =
b;(®)Yn; + A; and C(z, 7) be a closed Jordan curve in the upper half
plane containing those roots of A.(x, z, + \v,) with positive imaginary
part. Set

1 Normality is not essential for this definition.
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Piule) = S Ny, 7, + W) A, T, + )] N
[}

The system (A4, B) will be called closable, elliptic if and only if
inf{{p;@)|=a>0,2el|7,|=1,0<m-—-1,1<k<m} We
are using the form as given in Browder [5].

Notation 4.3. We will denote the formal adjoint of A by A’.

If B is a given normal set of orders <2m — 1, B = (B,, +++, B,_)),
let C = (C,, ---, C,_) be another normal set such that the set (B, C)
is a Dirichlet set of order 2m. We let m; be the order of B; and p;
be the order of C,,j7 =0, ..., m — 1. The following result is basic.
We assume all operators have infinitely differentiable coefficients.

THEOREM 4.4. Given an elliptic differential operator of order
2m and a Dirichlet set (B, C) of order 2m, there exists another
Dirichlet set (B, C') having infinitely differentiable coefficients with
the order of Bj; =mj=2m —1 — p;, and the order of C; = p =
2m —1 —m;,5=0,--,m — 1, and such that for u,ve = (2)

—1

1) (Au,v) — (u, Av) = 3, [STCjuB_;v do — SFBqu_}v_do] .

7=0

If (A, B) is closable elliptic then (A', B') is also closable elliptic.

We will refer to (4.1) as Green’s formula. A proof can be found
in Schechter [24].

Assumption I 4.5. We will always assume that (A4, B) is closable
elliptic unless something is stated to the contrary.
We will need the following

DEFINITION (Ltons-Magenes [16]) 4.6. For 0 < s let
9(2) = {ue H¥(Q): Aue L¥Q)} .
Equip &%(2) with the norm ||« |, , = (]|#]]? + || Aw ||)"* which makes
it a Hilbert space.

ProprosiTION 4.7. Let V, H be Hilbert spaces with V c H. Let
Te <(V, H); then the graph of T is closed in H x H if and only if
there exists a constant K such that for ueV,||ully < K[|| Tullz +

2zl

LemMA 4.8. The map D; e & (H(Q), H**(Q)) for s real, s # 1/2.
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Proof. Lions-Magenes [17, 18].
DEFINITION 4.9. Let Vy(Q) = {ue &(2): Bu = 0}.

THEOREM 4.10. There exists a constant C,, > 0 such that for
ue V() 4 llom = Coulll Aully + || w INE

Proof. This inequality has been proved by a great many authors,
for example Browder [5], Agmon, Douglis and Nirenberg [1], Schechter
[23].

REMARK 4.11. It follows that for u € V(Q), [ % |l,n = Coull| A'u [}, +
lu|l,] for some C,, > 0.

DEFINITION 4.12. The closure of V, in the topology of H=*(Q)
will be denoted by V3i(2).

COROLLARY 4.13. The operator A(A") with domain Vin(Q) (ViH(2))
18 @ closed operator in L* Q).

REMARK 4.14. There are numerous generalizations of Theorem
4.10 now in the literature. Some of these will be discussed in what
follows.

THEOREM (Browder |[5], Schechter [24]) 4.15. Let Ap be the

operator A with domain Vi(Q) and A} the operator A’ with domain

(). Regarding each as an operator in L*Q) the adjoint of A,
18 Ak

THEOREM 4.16. There exists a constant C,,, such that for we <7 (2)

02) il = Con 1Al + 00l 5 5 [l Bty ] -

Proof. Theorem 4.10, Lemma 4.8 and Theorem 3.9. This result
appears for example in Agmon, Douglis and Nirenberg [1].

COROLLARY 4.17. If Q s relatively compact then the kernel of
AL(AL) 1s finite dimensional, the range ts closed and has finite
co-dimension.

Proof. This follows by Rellich’s lemma, i.e., the cannonical injec-
tion of H*Q) into H(Q) (k > j) is compact; see Browder [5].
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5. Some interpolation results and normally solvable opera-

tors.

DEFINITION 5.1. The Dirichlet operator is the operator A with
domain V(Q).

THEOREM (Lions and Magenes [19]) 5.2. If the Dirichlet operator
1s an isomorphism and H, = Z%2), H, = 2(2), then for 0 <6 <1,
H, = o(Q), so long as 2ml =+ s -+ (1/2), s an integer =0,

Proof. This follows from Propositions 5.4 and 5.6 of Lions-Magenes
V [19], Theorem 2.8 and the fact that for s =0 and 2m the map
(4, ) is an isomorphism of <Z5(2) onto H%2) x I]7= H*—~%*([") and
of course Theorem 2.6.

DEFINITION 5.3. For 0 < s < 2m, let <7%(2) be the spaces inter-
polated between <%(Q) and <(9).

Thus if the Dirichlet operator is an isomorphism, Theorem 5.2
says that <%(2) can be identified with <r3(Q) for 0 < s < m so long
as s — (1/2) is not an integer. Observe that =@Nii(Q)C 4%(2) always
the injection being continuous. We shall identify the spaces é;(!))
in what follows.

THEOREM 5.4. If (B, C) is a Dirichlet set of order 2m, the map

(B,C) is a contmuous linear map of () into TI7=d He—mi—a/"([") x
Hjﬁl s—p5—(1/2) fO’I‘ 0<s<2m.

Preof. For s = 2m this is just Theorem 3.9 and for s = 0 it is
proved in Lions-Magenes [16]. For 0 < s < 2m, use interpolation.

THEOREM 5.5. For uc &5(2) and ve 2 —(Q),
(Au, v) — (u, A) = S ((Cu, B> — <Bsu, Cod}
] 0

then brackets representing the duality between [[7-d H*~#i~Y(I") and
H;n (}1 H"m s—m’ —-(1/2 (F) a/nd H] —01 Hs mj —(1/2) (F) and H;n. 01 H2m s— /4’ (1/2) (F)

DEFINITION 5.6. Let Ny(N,) be the kernel of Ay(A4}).
THEOREM 5.7. For 0 < s < 2m let N, denote Ny equipped with

the topology of H*(Q) and N_, denote Ny equipped with the topology
Hzs. For —2m < s,t<2m N, 1s topolegically isomorphic to N,
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and 1s thus closed im each such topology.
Proof. Freeman [10].

DEFINITION 5.8, For 0 < s < 2m let Nl); ={ue H(DQ): (u,v), =0
for ve N3} and Nt ; = {we Hst: (u, v), = 0 for ve N}

LEMMA 5.9. Let P be the orthogonal projection of H° onto N3
and 0 < s < 2m. Then Pe F(HQ), H(Q)) and Pe &7 (H7*, H7®).

THEOREM 5.10. Let 0 < s < 2m; then each we H*(Q) (HF*) can
be written uniquely im the form w =u +u”’ with v eN, and
'’ e N (N ).

Proofs can be found in Freeman [10]. Corresponding results hold
for N, Nj ..

THEOREM b5.11. Let V and H be Hilbert spaces with V < H.
Let Te #2(V, H) and assume T is a closed linear operator in H,
Let N denote the kernel of T and Ny = {ue V:(u,v)y =0 forve N}.
Then the range of T is closed in H if and only if there exists a
constant C > 0 such that for we Ny, |lully < Cl Tulla.

Proof. Open mapping theorem.

THEOREM (Kato [11]) 5.12. Let T be a closed densely defined
linear operator mapping o Banach space E into a Banach space F', T’
the adjoint of T. Then the range of T is closed in F if and only
1f the range of T' is closed in E’.

AssuMPTION 5.13. In the remainder of this section we assume
that the operator A, (and thus also A}) has closed range in H(Q).

LEmMA 5.14. Let fe HY(Q) and
P = ((Po’ ct 0y (pm—J) € Wﬁ H2m~m]-—(1/2)([") .
i=0

There exists a ue H™Q) such that Au = f and Bu = ¢ 1f and only
if for all ve€ Ny

(5.1) (£, ) + 5 <o, Ty = 0.

Proof. 1If such a w exists then by Green’s formula the condition
is clearly verified,
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Now suppose f and @ are given subject to the orthogonality
condition (5.1). There exists u,c H*™(Q) such that Bu, = ¢. Let
Au, = f, and apply Green’s formula to u, and ve H*™(2) to obtain

(Fir V) + S < T = (a, A'v) = 5, Crur, By -

Thus for ve N, we have (f,,v) + S22 <{p;, C;v) = 0 and using the
condition of the theorem we have (f — fi, v) = 0 for all ve N,. But
by Assumption 5.13 there exists u,e Vi™(2) such that Aw, = f — fi.
Then % = u, + u, € H*™(Q) and Au = f, Bu = .

The set of f, o, fe H(Q), pe [y H*™ ™~">(I") which satisfy
(5.1) is clearly closed.

COROLLARY 5.15. (i) (4, B) maps H*™(2) onto the closed subspace
m—1
{(f, p): fe H™(Q), p e >:0 HeEm=mi= Q) (f, v)

m~—1 —_
+ 5 4o, T = 0,0e N, f

(ii) (A, B) is an isomorphism of N, , onto its range and for

m—1
we Niu (11w = Ciaf | Aully + 5 | Bt lonm, 0] -

LEMMA 5.16. For fe HYQ) and @ € [[7= H=™i—*(I") there exists
a e 2%Q) such that Au = f and Bu = @ if and only tf there exists
a constant K such that for all ve Vir(Q)

m—1 —_
(5.2) (fy v + ZO<%, Coy| = K|lAv]],.
=
Proof. Suppose such a u exists and ve V*(Q2). Then
(f, 00+ S5 s T = (u, A'0)
=

and (5.2) is satisfled with |ju ||, = K. Now suppose (5.2) is satisfied
and define F(A'v) = (f, v) + "% {p;, Civ>. By (5.2), F is a continuous
conjugate linear form on a closed subspace of H°Q) and has a con-
tinuous extension to all of H°(Q). Thus there exists uec HQ) such
that (u, A'v) = (f, v) + S <p;, Clv)y forve VinQ). Taking ve o7(Q)
we see that ue ©2%(Q) and Au = f. But then (u, A'v) = (Awu, v) +
St dB;u, Civy and since it is clear from Theorem 3.9 that C'v fills

up II7= H 2”’”“*"F“’”(F) as v runs through V3r it follows that Bu = o.

THEOREM 5.17. Let fe HY(Q) and @ec [Iry H-™~"(I"). There
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exists we 2YR2) such that Au = f and Bu = ¢ if and only tf for
all ve Ny,

(5.3) (F,0) + S 1<g)” To>=0.

Proof. Let ve ViMQ) and write v = o' + v’ with v e N, and
v" e Nj on. Since Ny  VIr it follows that v” € Vi* and by Assumption
5.13 and Theorem 5.11 there exists a constant K such that |[v" |}, <
K || Av],., Now using (5.3) we have for

1

ve Vit (£,0) + 5 <pn Oy = (A 0) + 5, <2 O
and thus

(f,?) + ,d_.l<@]rc,/v>' < J‘ f|[ 2m|lv” ;2m I{ 2“ @Jw—m -—tl/")ﬂ :Qm

m=

:K@fwm+KguwmwﬂmMAwm.

=0

Now apply Lemma 5.16.

COROLLARY 5.18. (A4, B) maps 2% Q) onto the closed subspace of
HQ) x TIr=g H~™i=(") consisting of those {f,p)'s which satisfy
(5.3)

The kernel of A, B in 2% Q) is just Ny and Nj,N 29%Q) is
closed in =9%(9Q).

COROLLARY 5.19. (A4, B) is an isomorphism of N3, 2% L) onto
its range. There exists a constant Cy >0 such that |jull, <
Cilll Aully + 255 || Biww || o ] Sfor we Ni,o N 27U(Q).

Now by Corollary 5.15 (4, B) maps H*™(2) onto a closed subspace
of H°Q) x IIr=y H*™mi—~4([") and by Corollary 5.18 (A, B) maps

%(2) onto a closed subspace of H(Q) x [I7 H™i~*(I'). Thus to
each element (f, o, +-+,p,_,) in the image of (4, B) in HQ) X
7=t He—™i="(["), s =0, 2m, there corresponds a unique v € Z5(2)N N3,
for s = 0, 2m, such that Au = f and Bu = . Define a map T by
T(f, #) = w. By Corollary 5.15 and Corollary 5.19 T is a continuous
map of the image of (A4, B) into 2%(2) and into 2%(2). By letting
T be zero in the orthogonal complement of the image of (A4, B) in
the respective spaces we see that Te P (HQ) x [17= He—™i~%3([),
°(2)) for s = 0,2m and thus by interpoclation for 0 < s < 2m, using
a result of Lions [14].
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THEOREM 5.20. (i) For wue (2NN, 0<s<2m, there
exists a constant C) such that

(5.4) lull = Cf 1 Aulh + 5 1 Btllm,am | -
(ii) (4, B) maps <(2) N NsllB onto the closed subset of
H(Q) X "ijo He=mi—ai2)( )
conststing of those (f, p)'s in

HO(Q) >< 7nﬁ1 Hs—’lnj—(l/2)(1_')
=0
such that ’

(5.5) (Fy )+ S 4, T = 0 for all wve NS, .
i=0
(ili) There exists a constant C, such that for we Q)

m—1
6.6 ful =l Aul el S Bl | -

Proof. (i) Follows from the preceding discussion. This is
essentially the argument used in a slightly different context in
Schechter [25].

(ii) (5.4) implies that the image of (A4, B) is closed whereas the
set of (f,p) satisfying (5.5) is clearly closed and contains the image
of (A, B). If the sets were not the same there would exist an

m

(fy p)e HY(Q) x i Hs=mi=n( [y
=

satisfying (5.5) and a

m—1
(v, ) € H'(Q) x 3, H™m==5=00(1)

j=0

such that (f, v) + S22 {p;, ¥,>#0 whereas (Au, v)— > "3 <Bu,¥,>=0
for ue <5(2). It follows in particular that (Aw,v) =0 for we Vy
and thus ve N’. Hence (Au,v) — 373 <Bu, Cwy = 0 for ue <r(Q).
It follows then that Ciw = 4, and thus that (f, v) + 373 {p;, Civ> # 0
for v e N3, which contradicts (5.4).

(i) If we (Q), with u = «’ + w” with v’ € N and
uw'"e Ni, N 249 ,

we have
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lll < ol + ol = 1],
+ Ol Aw o + 5 1 Bty + 53 1 B i

since Au’ = 0. But B, is continuous on <5(2) and Auw’ =0 so
{| B |lsm;— K ||20 ||, But using Theorem 5.7, ||w'{[, = K||v' ||, = K [[u]]c
by Lemma 5.9.

When s — (1/2) is not an integer, <%(®) can be identified. In
general assuming 5.13, the closed range assumption, as was remarked
in [10], using the results of [10] and an argument similar to that
which preceded Theorem 5.20 one can show that (5.4) and (5.6) are
true for we <7 (2) N N, and w e < (2) respectively.

DEFINITION 5.21. For uwe <5(2) let

m

Hu@i(m = luii + [ Au|f + E_{) I‘Bjum~~m]~(1/z>
=

and let & 2(2) be the completion of <7(2) in this norm.

By the preceding remarks (A4, B) maps <%(2) onto a closed sub-
space of HQ) x [Irt He=—™~%(["). Now Q;(Q) is continuously
embedded in <(Q), &r(2) is dense in <r(2) and each B, is continuous
on Zr(2). Tt follows that <7%(f) is continuously embedded in ) 2(8).
Since on the one hand the image under (A4, B) of <%(9) is characterized
by (5.4) while on the other hand the image under (4, B) of QA‘Z(Q)
satisfies that condition, the two images must be the same. Thus if
we () there exists v € &%(2) such that A(w—v)=0and Bi(u—v)=0.
Consequently « — ve N © <%(2). Thus

THEOREM 5.22. Under assumption (5.18) and for 0 < s < 2m the
spaces Z5(2) and EQNZ(Q) are the same.
Following Schechter [25] for w e </(2) we define
lwl|_, = sup{|(u, v),|: for ve Vy and |[v], =1}

where s = 0. Observe that for uwe =(Q) |u|_, = |luwll_, = ull.
The following result was proved by Schechter [26]; see also Peetre
[22].

THEOREM 5.23. Let s = 0. There exists a constant C_, > 0 such
that for we 2(Q)

s = K(| At Loy + 53 1B |y + [ ams) -
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Moreover, there exists a constant C’_, > 0 such that for w: (u, v), = 0,
for all ve N, then

m—1
e £ O] Aoy + 3 1 Bty -

REMARK 5.24. (i) Both Peetre and Schechter assume that 2
we relatively compact. However, as was remarked in [10], Schechter’s
proof can be adopted to situations where 2 is not relatively compact
if A; has closed range.

(ii) Each result in this section has a corresponding analog if A
is replaced by A’ and B is replaced by B’'.

6. Perturbed boundary operators. Let L=(L,, -+, L,_,) where
L;e o7(H™Q), H*™™~Y»([")) and

m

|

1
Lj:

Li,Cvy  Lyje 2 (H W), H™ "= 4(T),

M

B
Il

0
kIO,"‘,m—l:
j=0---,m—1,.

Moreover, let L' = (L{, ---, L},_,) where L} = > L;,C} and

<ij§Dy "TF> = <@v Lllcj”‘/'f> fOI' Py va € 9([7) ’
1o € T (H (), H="= ()

Notation 6.1. For s = 0 we will let
m—1 m—1
oz, = 11 He=me= (), A, = 11 He-mw=99(17) ,
i=0 4=0
m—1 m-—
o7, =TI H==0=0() and A, = T] H™=o»5=e0(r) |
=0 i=0

LEMMA 6.2. For u,ve 2(2) we have

(A”LL, ’U) - (’M/, A’/U) = Sl {<Cju7 BJIIU - L;’U> - <B1u - Lju9 C—;’l}>} .

LeMMmA 6.3, Let peW,,. There exists uec V", Q) such that
Cu = @, the map @ — u being continuous.

Proof. Let ¢ = (p,, +++, pn_,) be given and let
Q/lr - (Q//-O) A "/’m—-l) € y/hn

where +; = "' L,,».. There is a u ¢ H*™(Q) depending continuously
on (@, ) such that Cu = @, Bu = . Then uwe Vi"(Q).
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THEOREM 6.4. Let A be the differential operator A with domain
m(Q) and A* the differential operator A’ with domain
V3 ()N 2%R). Then A* is the Hilbert space adjoint of A.

Proof. It is clear by integration by parts that A* is a restriction
of the adjoint of A. If v is in the domain of the adjoint of A then

ve 2%(Q) and for ue Vi"(Q)

m—

0 = (Au, v) — (u, Av) = >, KCyu, Bjv) — {Bu, Cv)}

=0

= 5 KCyu, By — {Lyu, Cod)
7=0

<

= mf_,l {Ciu, Blv — Lv) .
J=0

By the preceding lemma (B’ — L')v = 0.

Now using the notation of the preceding theorem the operator A’
with domain V3§._.(2) N &2°%(Q) is the adjoint of A. Consequently A'*
the adjoint of A’ with domain V3 _.(Q) is A**. Thus

THEOREM 6.5. A’*, the Hilbert space adjoint of the operator A’

with domain V5._p(2)N 2%(Q) is the closure of A with domain

o (Q) and 1s therefore equal to A with domain Vi",(2) if and
only if that operator is closed.

REMARK 6.6. In general A with domain V3",(2) to not closed
without some further restriction on L. For example, let 2 = {(x, t):
xeR" and ¢t >0} so that "= R". Let 4= >7.,D? and I be the
identity map of L*Q) onto L*Q). Let £ denote the dual wvariable to
@ and f the Fourier-Plancherel transform of f in L*/"). Define
Le 2(HY™I"), H(I") by (Lf) (&) = — (1 + [£[)"2f(&) so that L is in
fact an isomorphism. Let the domain of A be {u € H*(Q): (0u)ot) — Lu =0
on I} and for such w let Au = (I + d)u. If w is such that 4(s, t) =
exp {— (1 + | &2t} 7 (&) where fe H¥¥I") then w is the domain of A
but there is no C > 0 such that ||« ||, < C(|(I + Mull, + |||, for
all such . By Proposition 4.7, A cannot be closed.

In view of the inequality 4.1 it is easy to impose a norm condition
on L in order that A with domain V3".(2) be closed.

THEOREM 6.7. If there ewists a 0:0 <o <1/m such that for
0<j=<m-—1 and all we H™Q)
WL |lsmm;—aiey < 0/Com || % |lom + K[| A2 llo + [J 2 ]l] ,

then A with domain Vi, (2) ts closed.
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For the remainder of this section we assume that the operator A;
has closed range so that by Corollary 5.15 for all we NL,.»

-\

m
0w = G 1At o + S5 1 Bt o | -

Since the Hilbert space adjoint of A, is Aj. it also has closed range
so that for u e Ng, 5

m—1
10w = Coal A1+ 55 11 B im0

where the constants C!,, may not be the same. Thus we can immediately
assert

THEOREM 6.8. Suppose L ¢ 7 (H*™(Q), 57 ,,) and that there exists
a 0:0 <6< 1/m and such that for 0 <3 < m — 1 and uc H™(Q) we
have || L {lom—m;—am = 0/Chu || % llzm. Then for ve N,z we have

0l om = K 11421+ 53 1By = L)l | -

3=

Thus the operator A with domain Vi (2) also has closed range and
its kernel is contained in Nz. In particular if A is ingjective then
A with domain Vi (Q) is also injective and has a continuous inverse.

For e 2°%(2) N N, we have by Corollary 5.19,
m—1
Vullo = A%l + S 1B | nymars]
=
Now let K > 0 be such that for we H*™Q): || C,u [lam—p,—ap) = K || % |lom)
0=j=m—1and for ue Z%(D), || Coull_p_apm = Klllwll + || Aw||].
Let 0 < ¢ < 1/m and suppose >, 7= || L, || < min [6/mKC{, 6/mKC;,] for

0<j=<m—1 and that > || L}, || < min[d/mKC}, 6/mKC!,]. Then
for v e &°%.(Q) N Nj.,, we have

= Gl A+ 51185 = L flngam | -

THEOREM 6.9. Suppose that Az is an isomorphism and that
L;, L, 0 <7 <m — 1 satisfy the above conditions. Then for we H*™(Q)

m—1
0 lon = Gl 11 A2l S5 1/ By = L)t o |
and for we 2°%(Q)

m—1
Vulle = Gl 4wl + 5185 = Lo |y |
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Thus A and its adjoint are isomorphisms on their respective domains.

COROLLARY 6.10. Suppose that in addition to the hypothesis of
Theorem 6.9 L can be extended to <Z°%(2) so as to be a continuous
linear map of ZYR) into 57, and that there exists @ §:0 < ¢ < 1/m
such that for 0=j=m—1 and we DY) [Lull _mawm=
o/Cilliwlls + K || Aw||_sn] where |i-|| s s the morm in Hz*™. Then
the domain of A*, where domain of A is Vi,(Q), is contained in
H*™(Q).

Proof. Using the condition on L and Theorem 5.23 we have
m—1
tull = K[l Awl w55 11Bs = L],

for we <29%(2) and thus for we %) Vi () we have [|u]l, <
K || Au|_,,. Let vedomain of the adjoint of A. Then there exists
a number k(v) > 0 such that for we ViI" (Q), | (Au, v),| £ k@) || ull, <
Kk(v) || A% {l_s,. The linear form F on the image of A defined by
F(Au) = (Au, v), is thus continuous in Hz*™ and can be extended so
as to be continuous in all of H3*™. There exists a we H*™(Q) such
that F(-) = (-, w),. It follows that (Au,v), = (Au, w), or that
(Au, v — w), = 0 for we Vi, (2). But since A is an isomorphism on
m (D), v = we H™).

ProposiTiON 6.11. If each L; is compact then A with domain
Vir (2) has closed range.

Proof. The map w — (Au, Bu) has closed range in H(Q) X 57,,
and the map u—(0, — Lu) is compact. Thus the map u—(Au, Bu — Lu)
has closed range and hence the map w-— Au of Vi".(Q)-— L}Q) has
closed range.

PROPOSITION 6.12. Suppose £ is relatively compact and that A
with domain V2",(Q) is closed. Then the kernel of A is finite dimen-
sional and the resolvent of A, when it exists, is compact. The range
of A is closed. If the domain of A* is contained in <r5(2) with
s > 0 then the range of A has finite codimension.

Proof. The proof of each statement but the last is no different
from the usual proof for operators defined by differential boundary
conditions. As for the last statement since the domain of A* is
contained in H*(Q) then by the closed graph theorem

Null, = Cilll A o + | lo]
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for we =7(A*). It follows from Rellich’s lemma that the kernel of
A* is finite dimensional and thus that the codimension of the range
of A is finite.

7. Some consequences of interpolation.

DEFINITION 7.1.
A, B~ L, Q) = Vi_(2) N Q)

where L e F(HQ), 57,)

We will extend the method used in Bade and Freeman [3] to
higher order equations. In the remainder of this section we assume
that the operator A, has closed range.

THEOREM 7.2. Suppose L e ¥ (H(Q), 57,). Then for 0<s=<2m

(i) If for wez%(Q) and 0=<j=m—1, WL llem—ap =
o/Ci [|ull, + KJ|l Aullo + || % |lo] where 0 < 0 < 1/m then the operator
A with domain (A, B — L, 2) has closed graph;

(il) if for weuQ) and O0=j=m— 1| Lo, n _op =<
o/Cillvll, + K, || Au ||, where 0 < 0 < 1/m then the operator A with
domain (A, B — L, Q) is closed and has closed range. Its kernel
1s contained 1n Np.

Proof. By (i) and (5.5) we have for ue <%(Q)
m—1
ull = Gl Aulo + 1wl + 3 1By = Lt my |

which implies the result.
By (ii) and (5.4) we have for ue <7%(Q) N N;B

m—1
@Dl = i Aul+ 0B — L)l ] -

~ ~ 1
For we &%(2) u =4 + u” where w' eN, and u”e <7\ (2)N Ny
Since for w'e Np, Au’ = 0 we have [[(B; — L)u'|lsn,_ap = K || [l,.
Moreover |||, < K {Ju|l, where here K represents a constant, not
necessarily the same one each time it appears. Thus writing

i

Hulls = Tw/lls + {lu”[l, = K [jull

m—1
+ Cf I Aully+ 5 1B = Lullemson + K’ 10 l]

yields
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@2 w1l + fwlh+ 5 1B = Loy | -

This coupled with (7.1) yields (ii).

’
.

REMARK 7.3. Analogous results are valid for A’, B’ —
Following the procedure used in Bade and Freeman [3] we define
a map on H°Q) x A, as follows.

DEFINITION 7.4. Let the domain of S be the set of (%, Cu) such
that we <%(Q) and let S(u, Cu) = (Au, Bu). Thus S: H(Q) x A, —
H(Q) x &,. Analogously let the domain of S’ be the set of (u, C'w)
such that u e 2%(Q) and let S'(u, C'u)=(A'w, B'w). Thus S": H(Q) x
A — HY(Q) X 2771

THEOREM 7.5. S(S') is closed and densely defined. The adjoint
of S(S) is S'(S).

Proof. We prove the result for S, the proof for S’ being identical
modulo a change of notation. Closedness follows immediately by (5.6)
of Theorem 5.20 and the fact that C is continuous on <°(Q2). That
the domain of S is dense in H*(Q) x A, is clear.

Suppose

(v, @, —f, ) € HY(Q) x W x HYQ) X 5
and for ue Zr(Q)
(13)  (Au,v) + 5 B, o — () = 3 Oy, G = 0.

Then for uwe N, we have —(u, f) — 3,75 <Cu, y]> =0 and applying
part (i) of Theorem 5.20 to A’,B’,C’ and <(Q) there exists
we grms(Q) such that A’w = fand B'w = +. But then for u e é;(.@)
we have

(du, ) — (u, Aw) = S, (Cju, By — <Byu, T

= (Au, w) = (u, f) = 5, KCu, 5y — By, Ty} = 0.
Combining this with (7.3) yields for ue <r(Q)

(Au, v — w) + g@ju, P, —Cwy=0.

In particular for we Vi"(2) we have (Au,v —w)=0 and thus
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v—weN, CcH™Q). Thus v=w + (v — w)e () and Bv =
B'w =+ and A'v = A'w = f. Thus we have for ue F(Q)

(A’M,, 7)) - (M, f) - 21 {<Cju7 ‘%> - <Bju’7 —C_—.;/U>} =0.

Combining this with (7.3) yields 7' <Bu, p; — C v> =0 for u e F°(Q)
which implies that ¢; — Cjv =0 for j =0, ---,m — 1.

THEOREM 7.6. Let Le <7 (H*(Q), 57,) and define L by L(u, Cu) =
(0, LCu). Then Le 27(HYQ) x HQ), H(Q) x &7,) and the dual of
S — L is & — L'. Moreover, if L satisfies the conditions of Theorem
7.2, part (i), S — L has closed range in HYQ) x 57,.

We can now apply the procedure of Bade and Freeman [3], in
particular Lemmas 5.8-5.10 to show the following

THECREM 7.7. 7ith the above hypotheses on L and an analogous
one on L’ the operator A with domain QNS(A, B — L, Q) is a closed,
densely defined linear operator in L¥2), with closed range. Iis
adjoint operator is A’ with domain jZm‘S(A’, B — L', Q) which is
also closed and has closed range. Moreover, (f,p)e HY(Q) x 57, is
in the image of (A, B — L) on <(2) if and only if for all v in
the kernel of A on o™ (A", B — L', Q) we have

(f;v) — Z $p;, (B} — Lipvy = 0.
Finally if Ay is an isomorphism so is A with domain 3}*(/1, B — L, Q).
REMARK. Most of this has already been proved.

COROLLARY 7.8. If Q is relatively compact and 0 < s < 2m the
operator A with domain jS(A,B — L, Q) has finite dimensional
kernel. Its range is closed and has finite codimension. The resolvent
operator where it exists 1s compact.

REMARK 7.9. The example of Remark 6.6 works just as well in
75(Q) for 0 < s < 2 to show that some additional condition (other
than continuity) is required of L.

8. Lower bound conditions. Let a(u, v)= >\ ..i512m (@usDu, Dv).
Then we can write

m—1

(Au, w) = a(u, v) + >, S Ny vdo
j =0 r

F
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where {N,;: 0 < j < m — 1} is a normal set of boundary operators with
infinitely differentiable coefficients, the order of N, being 2m — j — 1.
The system (4, N) is closable elliptic. Similarly

(w, A'v) = a(u, v) + m}_,;l S vuNwdo .
=0 r

Let N(N') denote the set {N;:0=j<m — 1L}({N:0=j=m — 1}).
If C(C) is a Dirichlet set of order m,C = {C, ---,C,_},C" =
{Ci, +++, Cl,_)}, the order of C,(C}) being j, we can find another normal
set B={B,, ---,B,_,} and B' = {B’, ---, B}, the order of B;B})
being 2m — j — 1. The above formula remains valid if N;, v;, Nj, 7v;
are replaced by B;, C;, B}, C,.

We use the terminology of Lions-Magenes [16] and say

DEFINITION 8.1. A is H™(Q) elliptic if and only if for all v ¢ H"(2)
Re a(u, w) = «, || u||%, @ some positive real number.

Let L; < 3= L,;v, where L,; € o7/ (H™ ("), H-™++43([")) and
L= (Ly+++,L,_;). Then L,e &2 (H™Q), H ™ +([") and we will
write Le o7 (117=' H™(Q), I175 H-"9792(7)).  Let

m—1
aL(uy 7)) = a(u) ’U)+ ;)x <Lju’ m>
for w, ve H™(Q).

ProPoSITION 8.2. a,(-, ) is a continuous sesquilinear form on
H™(Q) and defines a linear map A of a dense subspace of H°(2) into
HQ).

REMARK 8.3. The linear map does not necessarily have closed
graph. See the example of Remark 7.9. If additional conditions are
imposed on L so that Rea,(u, %) = a; || |2, then the operator is not
only closed but is an isomorphism of its domain with the graph topology
onto H°(Q). This is essentially the result of Lax and Milgram [12];
see also Freeman [9], Theorem 2.2. Some conditions which guarantee
this are stated in the following

THEOREM 8.4. Suppose A 1s H™(Q) elliptic and that a, s given
by Definition 8.1. Suppose

(i) Re Sri<Lu,Yu> = a, | w| with o + a,> 0. Then the
operator A given by Proposition 8.2 1s an isocmorphism.

(1) If 12<s, <1 and for 0=<j=m—1, L,e & (H™Q),
H-=i=si(I")) or L;e s (H™(Q), H-™+Y([")) then (i) is valid for
ar(u, v) + Mu, v) where x> 0 is sufficiently large, t.e. thus the operator
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A + NI is an tsomorphism.

Proof. Part (i) is immediate. For Part (ii) we have either
| <L, viup | = Kl [17% [,
or
| <L, T | = K |0 ey |50 s S K 0 e 20

Then using either Lemma 3.6 and Lemma 3.1 or Lemma 2.12 we find
that given ¢ > 0 there exists a C(¢) > 0 such that > |<{Lu,vuy| =
ellu|lz + C)||w|? and (ii) follows from (i) by choosing &> 0
sufficiently small.

COROLLARY 8.5. Under the above conditions and for the same
N, A" + NI is also an isomorphism. The operator A(A') has domain
™A, N — L, Q) (z™(A',N' — L', Q).

COROLLARY 8.6. The adjoint of A with domain ™A, N — L, Q)
is A" with domain o™A', N' — L', Q).

REMARK 8.7. If Corollary 8.6 were true for any L € &7(]] 7= H™(2),

nt H—m=i=2)([M) with no additional conditions required then it

would also be true that A with domain 2™, N — L, Q) is the

adjoint of A’ with domain <2™A4’, N' — L', 2) and would thus be

closed. Thus by Remark 8.3 some additional condition on L is needed.

If N, v;, Nj,v; are replaced by B;, C;, B}, C; the result is still
true.

After this manuscript was completed we learned that Schechter
has considered similar problems in L? but with bounded Q. The
boundedness of 2 is essential because he needs Rellich’s lemma. In
this manuscript which he kindly sent us he has an elegant proof of
the inequality

| B llsem;—ap < clll Awllyom + [Jull] for ue(2).

It follows from this that <%(Q) is the completion in the norm
(1112 + | AH" of &7(2) under the closed range assumption.

We wish at this time to express our gratitude to the referee for
his comments and suggestions. In particular Theorem 8.4 is basically
his generalization of our result and the proof is basically his. Also
a question of his is answered in the negative by Remark 8.7.
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