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Let LS^ denote the Hubert space of weakly measurable
functions on the unit circle of the complex plane with values
in a separable Hubert space £%f, and whose pointwise norms are
square integrable with respect to Lebesgue measure. We are
concerned with invariant subspaces of LJ ,̂ by which we mean
closed subspaces invariant under the right shift operator, and
will be especially interested in those invariant subspaces which
arise from a bounded operator on gίf, using a construction
due to Rota and Lowdenslager. We begin by relating the
determinant of the "Rota inner function" of an operator
to the characteristic polynomial of the operator, along with
a similar interpretation of the minimal polynomial, when £$f
is finite dimensional. We then consider some general questions
about intersections and unions of invariant subspaces, and use
the results to establish a factorization theorem for finite
dimensional inner functions (the set of all ^ * 5 ^ , where
*?/, 5 *̂ are inner, is the same as the set of all ^ ^ * ) . We show
this theorem false if £ίf is infinite dimensional, by exhibiting
invariant subspaces ^^C Λ^ (which are also Rota subspaces)
such that ^ f Γ\ <yK*= (0)—a result of independent interest.

Rota subspaces seem to exhibit all of the pleasant and all of the
pathological properties of invariant subspaces in general, and enable one

to use properties of operators to provide counterexamples for general

questions about invariant subspaces. It is also to be expected that invari-

ant subspaces and their corresponding inner functions, like the analogous

theory of characteristic matrix functions [8], can be used to study

operators. Our results go in both directions, though they are of more

interest, we believe, when using operators to study invariant subspaces.

A word about notation. H%, will denote the subspace of L5r con-

sisting of all functions with weak analytic extensions to the disk.

The inner product of Sίf will be denoted by (x, y) and the norm of

Sέf by I x I = (x, x)%. For the inner product in L^ we will write

[F, G] = \(F(eix), G(eix))dσ(x) ,

where dσ = (l/2π)dx is normalized Lebesgue measure on the circle.

The norm of L%* will be denoted by | | J P | | = [F, Ff. T will always

be a bounded operator on ^f whose uniform norm \\T\\ is less than

one. We emphasize that when discussing subspaces of L ^ the term in-

variant means invariant under the right shift operator. For the defini-

tions and basic properties of L%> and H%>, consult Helson's book [2].
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160 M. J. SHERMAN

1* Rota subspaces* The first section will be devoted to the proof
of Theorem 10 (which gives the relationship between the characteristic
polynomial of an operator and the determinant of the corresponding
inner function), and to related results. We begin with a sketch of
Rota's construction.

Given e e ^ T and a fixed operator T on £έf such that || T\\ < 1,
define Fe e L%, by the formula

Fe(eix) = Σ (Tne)enix = (I - exxT)~ιe .

The correspondence e <-* Fe defines a bounded one-to-one linear mapping
onto the closed subspace J%Γ = {Fe: e e Sίf\ of HI,. Even though Rota
considered only the subspace 3ίΓ", we are going to follow Lowdenslager
and pass to the orthogonal complement ^£ of JίΓ in ΈL%,% ^J? is invariant
under the right shift operator and we shall refer to ^£ as the Rota
subspace of T. T has a proper invariant subspace if and only if ^f
is not maximal as an invariant subspace—a fact with which we are not
directly concerned, but which serves as an important motivation for
the construction. For details, see [2, pp. 103-107].

DEFINITION. Let jSf£ be the set of weakly measurable functions
A defined on the circle whose values are a.e. bounded operators on
2ίf, and such that ess sup || A(eix) || < °°. If A e £f£, we say A e
if AH%> s Hi,.

It is easy to see that A e £$ή£ if and only if A e Sf£ and Ae e 11%,
for all e e Sίf, which is in turn equivalent to (Ae, f) e Hz (or H°°) for
all e,/

DEFINITION. An inner function is an element ^ of 3ίf£ such that
ix) is a.e. a unitary operator on 3ίf\

Note that if 3$f is one dimensional, the inner functions are just
those of Beurling.

Lax's theorem says that every invariant subspace of H%, is of
the form ^H%,, where <%/ is a.e. a partial isometry of 3$f. When
^ is inner, i.e., unitary, we say that the subspace <Z/H%? = ^£ is of
full range—which is equivalent to the existence of an at most countable
collection of functions FUF2, in ^ such that {F3-(eiz)} spans £ί?
a.e. We say that an arbitrary subspace of 1?^ is of full range if this
last condition holds. For details consult Helson [2, pp. 57-68].

DEFINITION. We shall call any inner function <%sτ such that ̂ $11%,
is the Rota subspace of T, a Rota inner function of T. (See Corollary
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4.) ^ is unique up to a constant unitary factor on the right. (See
[2, p. 64].)

PROPOSITION 1. If i e ^ 5 , A is invertible a.e. and A^
then AH%? is a closed invariant subspace of I?&. of full range.

Proof. Clearly eixAH%, C AH jr. Since A is invertible, the func-
tions {A{eix)en}, where {en} is a basis for ggf, span £ίf a.e., and so
AiJi* is of full range. To see that AH%> is closed, let {AFn} be a
Cauchy sequence in the metric of L%*, and observe that since
A-1 e £f£,

|| AFn || ^ — || FJI , where M = ess sup || A~\eix) \\ .
M

Thus {Fn} is convergent, say to F, and

PROPOSITION 2. If A e <^S° and A-1 e jg^, then AH%, = iϊi,.

Proo/. A-Ήϊr ^H^^ AA~ιH%, g AEZJ. S fli.

THEOREM 3. TΛβ Rota subspace ^/S of T is (eix - T*)H!r.

Proof. Λlί consists of all FeH^ such that

[F, Fe] = [(F, (I - eixT)~ιe)dσ = 0

for all e e <%?. If we knew that for all Fe ^ , (/ - β-<x2τ*)-1ίτe H%,9

we could conclude that (/ — e"i*27*)~*1jF7e eixH%r, from which the theorem
follows immediately. Suppose Fe^f and let G = (I - e-^T^-'F
have Fourier series Σ - ~ 9 ^ H * Then F = X-~ ( ^ - T*φk+1)ekίx, and
since i^e i ί i , we must have <pA = T*φk+1 for fe = — 1, — 2, . Since

[(I - e-ixT*)~ιF, e] = [G, e] = (φ0, e) = 0

for all e e Sίf. Therefore φ0 = 0, and G e H%> as we needed to show.

We get a result of Helson's as our first corollary.

COROLLARY 4. A Rota subspace is always of full range.

Proof. Since || T \\ < 1, (eix — T7*) is invertible a.e., and therefore
the functions {(eix — T*)en}, where {en} is a basis for Sίf, span £ίf a.e.
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COROLLARY 5. If T is a normal operator, then a Rota inner
function of T is

^τ(eix) = (eίx - T*)(I - e^T)-1 .

Proof. It is easy to check that <%sτ as defined by this formula is
unitary. By Proposition 2, (/ — e%xT)~γHl? = Hi, and the corollary
then follows from the theorem.

The next two lemmas are due to Helson for A an inner function.

LEMMA 6. Let Sίf he finite dimensional, i G ^ A ^
Then det A e H°°, (1/det A) e L°° and

(det A)Hi g AHi .

Proof. AeJ%%? is equivalent to (Ae, f)e H°° for all g
from which it follows that det A e H°°. Similarly, det A~Ί = 1/det Ae L°°.
Thus (det A) Hi is a closed invariant subspace of Hi by Proposition
1. Let *A be the matrix of cofactors of A transposed. Then A*1 =
(1/det Ay A, and (det A) A-1 e <%&. Thus A~ι(άet A)H%r S H%r, or

(det A)H}r S AHί .

LEMMA 7. Let έ%f he N dimensional, Ae 3ΐf^, A~ι e Sf£ and
let p be any scalar inner function such that pH^ <Ξ AH%r* Then

VNHJr S (det A)H3r .

Proof. A~ιpH%, s H%r implies that

det {A-ιp)Hlr = (det A^p^H^ g Hi .

COROLLARY 8. // AH^ = H%*, then (det A)H%r = Hh.

Proof.

V*Hlr g (det A)H%> g Hi .

THEOREM 9. £έf finite dimensional. Let A, Be J^J? and A~\
B^e j&£ and suppose that AH%? = BH*#. Then (det A)/(det B) is an
invertible element in H°° (and is therefore an outer function in the
sense of Beurling).

Proof. Recall that an outer function / is defined by the properties
that feH2 and fH2nH2 is dense in H2. AHi = BH*, means
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by the corollary (det B^det A)H%, = H%>.

The next theorem is our goal.

THEOREM 10. Let £έf he N dimensional and let the characteristic
polynomial of T* be ΐlf=1(z - λy) = Hf^(eix - λy). Then if ^ τ is
any Rota inner function of T, we have, for some a such that | a \ = 1,

det % α Π I e%*

Proof. Since

it follows that det (β** - Γ*)/det <̂V is outer. Det (βίa; - T*) is by
definition the characteristic polynomial of Γ*. Since an outer function
can have no zeros or poles inside the disk, it follows that det *&$ must
have the same zeros to the same multiplicities as det (eix ~ T*). The
only inner function with these properties is a scalar of modulus one
times Πί=i (eix - λ.-Xl - \eix)~\

We turn next to an interpretation of the minimal polynomial of
T.

Let <f/ be an inner function and suppose <?SH%, a qH%* where q
is a scalar inner function. It follows from Zorn's lemma and Beurling's
theorem that ^/Ή.%? contains a maximal subspace of the form qH%>.
The q associated with this subspace will have the property that it
has the smallest set of zeros and the smallest singular measure (see
[6, p. 67]) of any inner function p such that ^/Hί a pH%r. In the
spirit of this last property we call this q the minimal inner function
of <%/ or of the subspace <2SH%,. Helson has called this q the charac-
teristic inner function of ^ , but we feel that Theorems 10 and 12
justify our terminology.

LEMMA 11 (Helson). The Rota subspace ^/f of T consists of all
lr, F = ΣTφke

kίx, such that

Σ
0

Proof, ^f is all F = v φφ^ s u c h that [F, Σ (Tke)ekίx] = 0 for
all e

[F, Σ (Tke)eki*] - Σ (<Pk, Tke) - X ((T*)kφk, e)

and since this expression is 0 for all β, the lemma follows.
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THEOREM 12. Let Sίf be finite dimensional and let the minimal
polynomial of T* be Πi=i (eίx ~~ \/) Then the minimal inner func-
tion of the Rota subspace ^ of T is (up to a scalar factor of
modulus 1)

ix\ _ e Λq(e") = Π
- \,e"

Proof. Note that qHlr = Πί-i (eiι - X f̂lJU since Πί=i (1 -
is outer (or, if you will, by Proposition 2). To prove that ^// Ξ
we must show that for all 2 ~ φke

kix such that X | φk \
2 < °o,

Πί=i (β" ~ λ j ) Σ ψifikix ε - ^ I n particular we must show that for all

Since ^^Γ is invariant, this last condition is also sufficient. By the
lemma, if we set Π5=i (β<a? ~ λi) = Σί=i afiiixi ^hen the above is equi-
valent to the requirement that

3=1

a3(T*yφ = 0 for all φ e

Since ^ α / is the minimal polynomial of Γ*, this condition is indeed
satisfied. Thus ^ a ^ί^i for this particular g and we may also
conclude that the minimal inner function is a finite Blaschke product.
By what we have shown, if ^// a pH^ for p a finite Blaschke product,
say pie**) = UU ifiix - & )(1 " βfiix)~\ then Π*=i (Γ* - ft ) - 0. Clear-
ly the largest such subspace is

2* Potopov subspaces* As a corollary to Theorem 3, we saw
that if T is a normal operator, then its Rota inner function is just
^V(eie) = (eίx - T*)(I - eixT)-\ While we cannot find a formula for
^ t in general, we can, using a theorem of Potopov, define a new
correspondence between operators and inner functions having all of
the essential properties of the old correspondence, and the advantage
that the Potopov inner functions are given explicitly by a formula.

For our purposes, Potopov's theorem (actually a special case of it)
can be stated as follows.

THEOREM 13. Let T be a bounded operator with \\ T\\ < 1. Then

^τ{eix) = (I - T*T)~ϊ(eix - T*){I - eixT)~\I - TT*)*

is an inner function.

For a proof, see [9, p. 145]. We comment that even though
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Potopov only claims his result when £%f is finite dimensional, his proof
that / — 3*5* 3*ί = 0 is valid when £ίf is infinite dimensional, and,
using his techniques one can easily show that I — 3*ί 3*ί* = 0 as
well.

COROLLARY 14. If T is normal, then ^τΉ.%r = 3*ίi?i.

DEFINITION. We call 3*ί the Potopov inner function of T and
3*ii?i the Potopov subspace of T.

THEOREM 15. If 3ίf is finite dimensional, then up to a constant
factor of modulus 1, det 3*5 — det ^ * , and the minimal inner func-
tion of Ήff is the same as the "minimal inner function of 3*5•

Proof,

det 3*i = d e t ( I - T*T)-*det(e ix - T*)det(J- eix T)

The first and last factors are constants. The second is the characteristic
polynomial Πί=i (βia! - λ;) of ϊ7*. The third factor is just

det [eίx(e~ix - T)]-1 = e-Nix\f[ (e~ix - λ,-)]"1 = Π (1 - e^λ,)-1 .

The second assertion follows from the fact that since
(I - T*T)-^vH%^ ^iHί a qH!r if and only if ^TH^ 3

Rota's construction can be imitated by defining the correspondence
e ^ Gβ, where ee£ίf,Gee H^, and G.(eix) = (I - T*T)~* Σ:=o(Tne)eni*.
The complement in H%> of the set of all such Ge is then the Potopov
subspace of T, and T has a proper invariant subspace if and only if
5*5#i- is n°t maximal as an invariant subspace of H%.

3* Intersections and unions of invariant subspaces* We turn
now to some general questions about invariant subspaces of L%>. Not
all closed invariant subspaces Λ? of L%> are of the form <%Ή%., where
^ is a.e. a partial isometry of 3ίf, and in order for Lax's theorem
to hold we need the additional hypothesis (always satisfied for subspaces
of H%*) that ^ contains no nonzero element F such that e~nixFe , ^
f o r n = 0,1,2, •••.

DEFINITION. A closed invariant subspace of L%> not infinitely
divisible by eix (in the above sense) will be called simply invariant.
^f is simply invariant if and only if ^Γ = <%/Ή.%>, where ^ is a.e.
a partial isometry of 3ίf\ (See [2, p. 64].)

DEFINITION. If ^^^V are simply invariant subspaces of L%*,
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we define ^/ί U ̂ V to be the smallest simply invariant subspace of
L%r containing ^£ and .^Γ, if such a subspace exists.

It is clear that if ^£ and ^r are both contained in any simply
invariant subspace of L%r, they will be contained in a smallest such.
However, it is concewable that all subspaces of L%f which contain ^£
and , # and are invariant under the shift operator are also infinitely
divisible by eix, and therefore not of the form

DEFINITION. If ^ ,

defined, we define <%/ U
<%SΉ.%r U 5 -̂ffi-. Clearly
be of full range if <%sH%*

are unitary a.e., and <ZsH%r U
5^ to be any <7/Λ such that

^ is also unitary a.e. since 7^
and yHl* are.

DEFINITION. If

full range, we define
are unitary a.e., and n 5

is

must

is of
n 5̂ " to be any 2 ^ such that <2sH%r Π

cWΉ.%r. The intersection of simply invariant subspaces is always
simply invariant, but we wish to exclude the case where the inter-
section does not have full range.

DEFINITION. If ^f?, <yy" are invariant subspaces of L%Ί let ^/ί +
Λr be the smallest invariant subspace of L^ containing ^ and Λr.

DEFINITION. Let

if

inner}
inner}

is one dimensional.

LEMMA 16. If <%/, ^ are unitary a.e., then f
and only if 5 ^ * ^ is inner.

.%- if

LEMMA 17. ( i )

(ii)
n ^ exists
U 3?" exists e

Proo/. ( i ) Let ^H^ Π ^ " i ϊ ^ = W~H%, where
i.e., assume <%/ n ^ exists. Then M i 2 ^ # J r ,
therefore ^ * ^ " and ^ " * ^ ^ a r e inner. Thus ^ * ^ "
and <g^*5^ e.ΛΓ .̂ Conversely, if ^ * ^ " = j^^P**, where
inner, then ^ J ^ = ^ ^ , and

is unitary a.e.;
a ^ f T i and

are

( i i ) If •

<&*<%>" = ( ^

where ^ , &
and therefore

^/Ίί^ U 5^ίz Jr = Ύ/
ϊ i , and therefore 2

are inner, then ^<^
^ (J 5^ exists.

^jffi, then ^
^ * ^ and 5 ^ *

Conversely,

^ £
^ "
if

are inner.
^ * ^ " = <g

fl^ and 35

and
Thus
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We note as a consequence of the lemma (what is clear anyway)
that if <%/, y are inner, then ^ (J 5̂ ~ exists. If ^g^ is finite dimen-
sional, it follows from Lemma 6 that ^ Π ^ " exists when ^ and
5^ are inner, since

and s ^'JH

THEOREM 18. // Jg^7 is jfo&iίe dimensional, then

Proo/. Let Szf e *N#-, say s^ = ^ * 3 ^ . Then since by the above
comment, ^ Π 3̂ ~ exists, we have <^*5^eiVi>, which proves that
*JV^ S JV£.

The other inclusion follows from the existence of a parallel theory
of subspaces of L^ which are invariant under the left shift operator
(multiplication by e~ix) and not infinitely divisible by e~ix. The
prototype of such subspaces is, of course,

K%. = {Fe L%.: F = v φke
kix, where φk = 0 for k > 0} .

One can show that if ^/f has the above properties, it is of the form
, where <%/ is almost everywhere a partial isometry, and that

lr S K%f if and only if ( ^ e , /) is the conjugate of an H°° function
for all e,fe£ίf. Analogs of all of our theorems hold for "conjugate
inner" functions. In particular, if ^ , 3 ^ * are conjugate inner, then
<%/*y = ξ ^ ^ * , where ^ , 2$ are conjugate inner. But this just
says that Nί g *AΓ5r.

If Sίf is one dimensional, one can say much more. If p, q are
scalar functions of modulus 1 a.e., we will write p\q (p divides q) if
qp e H2; i.e., if qp is an inner function. Recall that N = {pq: p, q
scalar inner functions}.

THEOREM 19. Let p, q be of modulus 1 a.e., normalized so that
if, say p(eix) = enίxr(eix), where r(0) Φ 0, then r(0) > 0. Then

( i ) pH2 f) qH2 = 0 ~ pH2 + qH2 = L2 <=> pq £ N.
(ii) // pqeN, then (p U q)(p Π q) = pq a.e.

Proof. Suppose p U q exists. Then (p U q) \ p and p U q \ q and
therefore p \ [pq/(p U q)] and q | [pq/(p U q)] and therefore p f] q exists,
and since (p Π q)H2 is the largest subspace contained in pH2 and qH2,
we have that (p Π g) | [pg/(P U <?)].

Suppose now that p Π g exists. Then [pg/(p Π g)] I P and [pg/(p Π g)] g
and therefore p U g exists, and since (p U g)iϊ2 is the smallest subspace
containing pH2 and qH2, we must have that [pq/(p Π q)]\p Ό q.

We have shown that p U g exists <=> p Π g exists, and that when they
exist both pq/(p I) q)(p ΓΪ q) and (p (J g) (p Π g)/pg belong to i ϊ 2 . Thus
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pq = a(p U q)(p Π q) and by our normalization, a = 1.

Clearly if p Π g does not exist; i.e., if pH2 Π qH2 is not of full
range, then pH2 n qH2 = (0). If pH2 U qH2 does not exist, then
pH2 + giϊ 2 = ,^C must be invariant under multiplication by e~ίx (since
an invariant subspace of L2 which is not "doubly invariant" is of the
form qH2, where | q \ = 1 a.e.—see [5]). Wiener's theorem (see [11])
then says that 3 a Baire set E on the circle such that Λ? = {/: f(eίx) =
0 a.e. on E}. Since p, q e ^ and | p \ ~ \ q \ — 1 a.e., E must be of
measure 0, and therefore pH2 + qH2 = ZΛ

It remains to prove that p/q e N if and only if pH2 π qH2 Φ (0)
(which we have just shown is equivalent to pH2 + qH2 Φ L2). If
pq = ί>!^, where p^q^H2, then ^ i = Pi^ e p i ϊ 2 Π giϊ 2 ^ (0). If
pH2 Π ̂ i ϊ 2 ^ (0), say pH2 Π g f̂2 = rH\ where | r | = 1 a.e., then
pr, qr G if2 and therefore pq = {pr)(qr) e iV.

There seems to be little possibility of generalizing this theorem to
the case of finite dimensional inner functions. In order for the above
proof to work one would need to assume that ^/, y , <%/ U 5^", ^ Π ^
all commute. But for inner functions ^ , 2 ^ to commute is not a
property of the subspaces ^J5Γ^, ψ'Hlf, but of a particular choice of
inner functions. Thus *%SΉ.%r and ^ ί f i ϊ j , , where i f is a constant
unitary operator both represent the same subspace, but may not
commute with the same inner functions. We can, however, use the
terminology suggested by the above theorem to give a kind of explicit
representation for the minimal scalar inner function of a finite dimen-
sional inner function ^ .

DEFINITION. If /, g e H2 and / = pfu g = qgu where p, q are inner
and fu g1 are outer (see [6, p. 67]), then we define / U g and f Γ\ g
to be p U q and p f] q.

THEOREM 20. Let 3$f be finite dimensional and let ^ =
where <%s is inner. Let <%s = (u%j) and let the matrix of

lan α12 aln\

a'21

(det 1^)^* = —
1 * of <%S transposed.

matrix of cofactors

Then the minimal inner function of Ήf is equal to

Q ~ ( o u Ufl1 2U U aln) n Π (α β l U U ann)
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Proof. Let &\mj%f = 2 for simplicity. Suppose ^/έ Ξ2 tH^, for
£ an inner function. Then given any /, g e H2, there exist hu h2 e H2

such that

ί t i A + 1̂2/̂ 2 = tf

u2lhx + u22fc2 = tg .

Therefore

v _ t(u22g - u12f)

d e t ^

and

i, _ ^ n f f - u21f)

must be analytic for all /, g. Thus det ̂  \ t(u22 U ul2) and det ̂  \ t(un U ^2i)
Thus t is minimal if and only if

det ^ = t(u22 U u12) Π ί(^n U u21) .

Clearly tfntg = t(ff)g) for all f,geH2 and thus

det ^ = ί[(%22 U ul2) Π (t6n U 2̂1)]

as asserted.

We now return to the theorem that *iV^ = Nί when £%f is finite
dimensional. To prove this result false for §ίf infinite dimensional,
it would suffice to exhibit inner functions ^ , 5^ such that
<ZSH%r Π yΈίlr is not of full range. For, by Lemma 17, ^ Π 3*~
exists if and only if ^ * ^ G ΛΓ|, which says that *iV;r g N&. (By
using the same symmetry used in proving Theorem 18, one can also
see t h a t N%> ξ£= *N&> )

THEOREM 21. If ^f is infinite dimensional, there exist invariant
subspaces ^/f', ^K Q H%> of full range such that ^fΐ? Π ̂ ylr — (0).

Proof. Let T, U be bounded operators on <§ίf which are each
one-to-one and whose ranges are disjoint. Let ^/f, Λ" be the Rota
subspaces of T* and U*. Then by Lemma 11

: Σ Tnφn - θl
o J

: Σ ϋ > n = 0} .

Suppose F e ^ f n -<r, where F = Σ ^e**1. Then
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Since T and Z7 have disjoint ranges, φ0 = 0.
Therefore

τΨl = - w = 2

Since T, U are one-to-one, we conclude that

Therefore φ1 = 0, and by induction φn — 0 and î 7 = 0.

In conclusion we might remark that the above theorem gives an
example of another kind of pathology. Thus if ^/έ = ^H^, Λ' —
yHlr we have <ZryHlr £ ^ i ? i , but <ZfjrH%r Π ̂ Hl^ = (0), and,
of course, 5^<^i?i Π ̂ H^ = (0).

The contents of this paper form parts of the author's thesis,
written under the guidance of Henry Helson at the University of
California, Berkeley. The author would like to express his thanks
and to acknowledge his considerable indebtedness to Professor Helson.
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