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There are many similarities between groups of prime power
order and nilpotent Lie algebras. Here we present a non-
imbedding theorem in nilpotent Lie algebras which is an
analogue of a nonimbedding theorem of Burnside in groups
of prime power order.

Burnside in [2] proved the following two theorems :

THEOREM Bl. A nonabelian group whose center is cyclic cannot
be the derived group of a p-group.

THEOREM B2. A nonabelian group, the index of whose derived
group is p2, cannot be the derived group of a p-group.

Hobby in [3] proved the following analogues of the theorems of
Burnside :

THEOREM HI. If H is nonabelian group whose center is cyclic,
then H cannot be the Frattini subgroup of any p-group.

THEOREM H2. A nonabelian group, the index of whose derived
group is p2, cannot be the Frattini subgroup of any p-group.

The purpose of this note is to establish the analogues of the
theorems of Burnside in Lie algebras. The main result is the follow-
ing Theorem 1. The Lie algebras which we consider here are finite
dimensional over an arbitrary field F. The Frattini subalgebra Φ(M)
of a Lie algebra M is defined as the intersection of all maximal sub-
algebras of M. We also show that in a nilpotent Lie algebra N, Φ(N)
coincides with the derived algebra of N. Hence, the analogues of
Hobby's theorems in Lie algebras are the same as the analogues of
Burnside's theorems in Lie algebras.

THEOREM 1. A nonabelian Lie algebra L whose center is one
dimensional cannot be any N{, i ^ 1, of a nilpotent Lie algebra N
where N = No ID iVi Z) N2 ID ID Nt ZD 0 is the lower central series
of N.

Proof. Suppose the contrary, i.e., L — N{ for some i, 1 ^ i < t,
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in N. Since L is nonabelian, L Φ Nt. Let z be a basis of the center
of L, denoted by Z{L). The following Jacobi identity

[[u, z], x] + [[z, x], u] + [[x, u], z] = 0

holds for every ueN and every xeL. Since zeZ(L), the second
term of the identity zero. The third term of the identity is also zero
since L is JV* and Nt is an ideal in N. Hence, we have [[u, z],x] = 0
for every x e L and every ueN, i.e., [u, z]e Z{L) and [u,z] — auz
where au e F.

There are two cases : (1) If au Φ 0 for some u e N, then the lower
central series of N never reaches zero, that is a contradiction to N
being nilpotent. (2) The case [u, z] = 0 for every ueN. Then
zeZ(N), i.e., Z(L) g Z(iV). Since JV/Z(L) is nilpotent, we have
(JV/̂ (L)) =) (NJZiL)) ZD =) (NJZ(L)) - (L/Z(L)) z> . . . ID (NJZ(L)) 2 0
where we have JV* = Z(L) since JV* S ^(JV) and L = JVf. and the
dimension of Z(L) is one. There is a nonzero ^ e Z(N/Z(L)) f] (L/Z(L)),
i.e., y e (Nt^/Z(L)). Then [y, v] = 0 for every veN/Z(L), i.e., [#, v] = α,^
where α^"e F,y = y + Z(L) and I; = v + Z(L). Let w be any element
in N, by using Jacobi identity, we have

[V, [v, w]] - [avyz, w] + [v,awyz] = 0 ,

i.e., y commutes with every element in JVi. In particular, y com-
mutes with every element in L. That contradicts the dimension of
Z(L) being one. Hence, the proof is completed.

THEOREM 2. A nonabelian Lie algebra L, the dimension of (L/Lι)
is 2, cannot be any Niy i ^ 1, of a nilpotent Lie algebra N where
N = No ID JVi ID N2Ό ID Nt Z) 0 is the lower contral series of N.

Proof. Suppose the contrary, i.e., L is some Niy t < i ^ 1. Then
L is nilpotent. We claim that the dimension of L/Lu denoted by
dim (L/Li), is 2 implying that dim (LJLz) = 1. Suppose dim (LJLJ > 1,
then there exist linearly independent vectors x and y in Lλ = Li/Z/2,
and there also exist linearly independent vectors % and v in a
complement C of Lx in L such that [u, v] = ». Similarly, there exist
if', vf e C such that [ύf, v'] = ^. Since dim C = 2, [ΰ', IT'] = α[%, v]
where α e ί 7 . This contradicts the linear independence of x and y.
Hence, dim (LJL2) = 1.

Since L2 is a characteristic ideal of L, L2 is an ideal in N. Then,
the Lie algebra N/L2 contains L/L2 as a term in its lower central
series. Since the center of L\L% is one dimensional and L/L2 is non-
abelian, this is impossible by Theorem 1.
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THEOREM 3. If N is a nilpotent Lie algebra, then Φ(N) =iV1.

Proof. If N is abelian then Φ(N) = iVΊ = 0. Consider that N is
nilpotent and nonablelian : Let uuu2, * ,uk be a basis a complemen-
tary subspace U of Nλ in AT, it is easy to verify that k must be ^ 2,
and let Ut = ((u,)) + + ((u^)) + ((ui+1)) + + ((uk)) + Nlfi =
1, 2, , ft, where the sums are direct sums of vector spaces. Clearly,

each Ui is a maximal subalgebra of N. Then Φ(N)QC\ Ui = Nx.
t = l

Now, we show that #(iV) 2 Nt. Let Λfα be a maximal subalgebra
of ΛΓ. It follows from Proposition 3 on p. 56 in [1] that every max-
imal subalgebra in a nilpotent Lie algebra is an ideal. Hence, Ma is
an indeal in N. Let a; be a nonzero vector in N and x $ Ma, then
the direct sum of the vector spaces ((#)) and Ma constitutes a sub-
algebra. Since Ma is maximal, ((&)) + Ma = JV. Since ikία is an ideal
of N and since N/Ma is of dimension one and since N/Ma is nilpotent,
we have

N/Ma 3 ΉΛfβ - 0 ,

i.e., Ma 2 Ni for any maximal subalgebra Λfα. Consequently, Φ(N) =
Π α ^ a ^ i , and

COROLLARY 1. If L is a nonabelian Lie algebra whose center is
one dimensional, then L cannot be the Frattini subalgebra of any
nilpotent Lie algebra.

It follows from Theorem 3 and Theorem 1.

COROLLARY 2. A nonabelian Lie algebra L, dim (L/L^ = 2, cannot
be the Frattini subalgebra of any nilpotent Lie algebra.

It follows from Theorem 3 and Theorem 2.
Our Theorem 1 and Theorem 2 contain the analogues of Theorem

Bl and Theorem B2 respectively. Corollary 1 and Corollary 2 of The-
orem 3 are the analogues of Theorem HI and Theorem H2 respectively.

REMARK. The following example shows that for each integer
n ϊ> 3 there is a nonabelian nilpotent Lie algebra L of dimension n
whose center is one dimensional (also, the dimension of L\LX is 2):
Let L = ((#!, x2, , xn)) with a bilinear anti-symmetric bracket mul-
tiplication such that [xu x{] =xi+1 for i = 2, 3, , n - 1, and all other
products are zero.
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