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Ulm’s theorem asserts that, within the class of all reduced
countable abelian p-groups, a group is determined, up to iso-
morphism, by its Ulm sequence. Although this theorem fails in
general for uncountable groups, there are classes of uncountable
abelian p-groups whose members are determined within the class
by their Ulm sequences., Kolettis has shown that the class of
direct sums of countable p-groups has this property. Here it
is shown that the class of those abelian p-groups for which the
Ulm type is finite and all the Ulm factors except the last are
direct sums of cyclic groups, is another such class.

Let G be a reduced abelian p-group. Define the subgroup G*
for each ordinal a as follows. Set G°= G. Proceeding inductively,
if « =B 4+ 1, define G* to be the subgroup of those elements in G*
which have infinite height in G¥; if « is a limit ordinal, define G* =
Ng<: G°. Since G is reduced, there is a first ordinal z such that
G* = 0; this ordinal 7 is called the Ulm type of G. The Ulm factors
of G are defined to be the factor groups G, = G*/G** (a > 7). And
the sequence of Ulm factors G, (¢ < 7) is called the Ulm sequence
of G. Two groups G and H have isomorphic Ulm sequences if
G, = H, for every «.

Our theorem is now the following:*

If G is a reduced abelian p-group having finite Ulm type n and
such that its first n — 1 Ulm factors G, -«+, G,_, are direct sums of
cyclic groups, and vf H is any other abelian p-group whose Ulm
sequence is isomorphic to that of G, then H = G,

It should be noted that in this theorem no assumption is made
on the last Ulm factor G,_, of G.

Neither the assumption of finite Ulm type nor the assumption
that all but the last Ulm factor are direct sums of eyclic groups
can be dropped from the hypotheses of the theorem. For example,
if G is any countable p-group whose Ulm type is infinite, then there
is an uncountable p-group whose Ulm sequence is isomorphic to that
of G. Moreover, it is known that there are nonisomorphic p-groups
of Ulm type 2 having isomorphic Ulm sequences.

1 Since completing this paper, I have learned that P. Hill and C. Megibben have
obtained similar results.
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Throughout the proof of the theorem, the usual notation and
terminology, for the most part, is used.? If z is an element of a
group, then the cyclic subgroup generated by « is denoted by [x].
The symbol @ will be used to designate the direct sum of a pair of
subgroups, while the symbol >, will designate the direct sum of a
family of subgroups.

The proof begins with the following common generalization of
Kolettis’ theorem [5] and a theorem of Zippin [6].

(a) Let G and H be reduced abelian p-groups which are direct
sums of countable groups, and whose Ulm sequences are isomorphic.
If o is an ordinal, and f is an tsomorphism of G° onto H°, then f
extends to an isomorphism of G onto H.

Proof. Write G = >e; G; and H = 3 ;e; H; where each G; and
each H, is countable. For every subset K < I and every subset
LgJ set GK) = Xiiex Gs and H(L) = 3 e H;.

Let « be an ordinal less than ¢. For each 7¢I and each jedJ
pick sequences of elements {b;,.,.}ucee 1N Gf aNd {C},n,mimcw 10 HF such
that

Gi[G:* = 3 [biaun + GFH]

n< oo
and

Hy[H " = 3, [ehan + Hi7.

Then
Ga/Ga+1 — Z [biyam, + Ga+1]
= HYH = 3, [60m + H™

and consequently there exists a one-to-one function @, which maps
the set {b;...ltel;n=1,2 ...} onto the set {¢;,uljcd;m=1,2 ...}
in such a way that b,,,,, + G**' and @(b,,...) + H*"' have the same
order.

We now construct two sequences of subsets I, &I and J, & J
such that the following conditions hold for each ordinal v:

(i) I, and J, are countable and nonempty.

(i) LnL,=J,nNJd,.=0 for p <.
Let I* denote the set-union of the I, (¢ < v), and let J* denote the
set-union of the J, (¢« < ).

2 See, for example, Fuchs [2] or Kaplansky [4].
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(iti) If 7¢I, and z e G?, then f(x)e H(J*). Conversely, if jeJ,
and y e H/, then f~'(y) e G(I**).

(iv) If 7¢I, then @b, € H(J, for all « and n. Conversely,
if jedJ,, then @;%(c;,...) € G(I,) for all @ and m.

Suppose the sets I, and J, have been constructed for each p <,
and suppose that I* = I. Pick two sequences of countable subsets
McM,cMcS---SI—-—I"and NNEN,EN,E .- =J —J* such
that M, # @ and such that the following hold for each positive
integer q:

f(G(M,)") & HIN,) b H(J) ,

O ofbi) € H(N,) it ieM,,
FAUHNY) € GM,0) @ G
O (Csrm) € G(My 1) if jeN,.

Then if I, =M, UM,UMU--- and J, =N, UN,UN,U --
clear that I, and J, satisfy (i)-(iv).

Since all the sets I, are nonempty, there exists an ordinal » such
that I* = I'and J* = J. Consequently, G = G(I*) and H = H(J*), and
for each v <\,

.-, it is

(1Y GUI)=6INDGUI) and HJ*) = H(J)@ HWJ) .

Suppose that there is an isomorphism g, of G(I*) onto H(J*)
such that the restrictions of g, and f to G(I*)° are equal. Let f,
denote the restriction of f to G(I,)°, and let 7, denote the projection
of G(I**') onto G(I,), m; denote the projection of H(J**') onto H(J,),
and 7, denote the projection of H(J**') onto H(J*), as determined by
the decompositions (1). If xe G(l,)’, then by (iii) there exist elements
ye H(J,) and z € H(J*) such that f(z)=y +%. Then f~'(y)=2— f(z),
and as f7'(r) e G(I*), it follows that n,f~'m f(x) = x. Similarly, if
ye H(J,), then 7, fr,f(y) = y. Therefore 7, f, is an isomorphism of
G(I,)° onto H(J,)°. Moreover, for each a < o, the ath Ulm factors
of G(I,) and H(J,) are isomorphic by (iv), and hence G(I,) = H(J,) by
Ulm’s theorem. By Zippin’s theorem [6, § 8], the mapping z.f, ex-
tends to an isomorphism %, of G(I,) onto H(J,). And inasmuch as
7w, f, is a homomorphism of G(I,)° into H(J*)°, this homomorphism
extends to a homomorphism &, of G(I,) into H(J*) by [1, 1.2]. Con-
sequently, if A = h;, + h,, and if g,,, is the direct sum of g, and #&,
then g,.; is an isomorphism of G(I**') onto H(JI**') whose restriction
to G(I***)° equals the restriction of f to G(I**')°. A transfinite induec-
tion now completes the proof of (a).

(b) Let G be a reduced abelian p-group, and let B be a basic
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subgroup of G*. Then there is a subgroup S such that S 4+ G' =G
and S*'=SNG = B.

Proof. Since GYB is divisible, it is a direct summand of G/B,
say G/B = G'/B@ S/B, where S is a subgroup of G containing B.
Then S+ G'=@G, and SNG'= B. Suppose be B, and n is any
positive integer. Then as be G', there are elements ce S and u ¢ G*
such that b = p"c + p"u. Therefore p"c € G*, and consequently p"c € B.
Hence p"u ¢ B, and inasmuch as B is pure in G?, there is an element
d € B such that p*u = p"d. Thus b = p"(c + d), and it follows that
B S*=SnaG.

The next lemma is a special case of the principal result of Irwin-
Richman [3].

(e¢) If G is an abelian p-group for which G/G' and G' are
direct sums of cyclic groups, then G 1is a direct sum of countable
Jroups.

(d) If G and H are reduced abelian p-groups such that G/G* =
H/H* and G/G' is a direct sum of cyclic groups, and if f is an
isomorphism of G' onto H', then f extends to an isomorphism of G
onto H.

Proof. Let B be a basic subgroup of G, and let C be that
basic subgroup of H' which is the image of B under f. By (b)
there are subgroups S of G and T of H such that S + G'= G,
SNG'=8'=B, T+ H'=H, and TN H*'=T*=C. Now

S/S' = S/B = G/G' = H/H= T/C = T/T*,

and hence by (c) and (a) there is an isomorphism @ of S onto 7 such
that the restriction of ¢ to B is the same as the restriction of f to
B. If A is a complete set of coset representatives of B in S, then
each element x € G is uniquely of the form x =a + w where ac A4
and ueG', and the mapping g defined by g(x) = p(a) + f(u) is the
desired isomorphism of G onto H which extends f.

The theorem now follows directly from (d).
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