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Let G, H, K be locally compact abelian groups where K
is noncompact and both the quotient G/NG where NG is a
compact (normal) subgroup and the quotient H/Nπ where NH

is a compact (normal)' subgroup. Then in a natural fashion
the group algebras Li(G) and Li(H) are modules over Li(K)
and

In [2, 3, 4, 5] there are discussions of tensor products of Banach
spaces and Banach algebras over the field & of complex numbers and
over general Banach algebras. We note the following results to be
found in these papers:

(i) If A, B, C are commutative Banach algebras and if A and B
a r e b i m o d u l e s o v e r C ( w h e r e \\ca\\ ^ \\c\\ \\a\\, \\cb\\ < ; \\c\\ \\ b | 1 , a e A ,
beB, ceC) then the space ϊΰlD of maximal ideals of D = A(&0B may
be identified with a subset of WlA x %JlB as follows:

Tip = {(MAί MB): MA e 2Ji4, MB e WlB, μ(MA) - v(MB) Φ null map} .

(Here μ and v are continuous mappings of W,A and WlB into 2JΪ° = the
maximal ideal space of C with the null map adjoined. These maps
are defined as follows: If a e A, b e B, c e C then

<Γ(MA)c~(μ(MA)) = caT(MA)

b~(MB)c~(v(MB)) = dΓ(MB) .

Finally

c(a(g)bΓ(MA,MB) = (

[3].)
(ii) If G, H, K are locally compact abelian groups and if ΘΘ: K—+ G,

θH:K-+H&γe continuous homomorphisms with closed images, then
Li(G) and Lλ{H) are L1(iί)-bimodules according to the formulas:

ca(ξ) = \ a(ξ - θG(Q)c(QdZ, a e L^G), c e LX{K) .
JK

cb(η) = \ b{η- θB(ζ))c(ζ)dζ, b e LAH), c 6 L,(K) .

Furthermore the mappings μ and v of (i) are simply the dual mappings
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242 BERNARD R. GELBAUM

of the character groups in question, [3, 4] Finally,

L,{G) ®Ll{κ) Lλ{H) = Lλ(®)

where

© = G x H/(0* x ΘM) diagonal (X x X) and θH(ζ) = 0 * ( -

Loosely phrased, this says that the tensor product of group alge-
bras is the group algebra of the tensor product of the groups.

The above results lead to the study of a similar (somewhat dual)
situation described as follows:

Let G, H, K be locally compact abelian groups and let ΘG:G—>K,
ΘΠ:H-^ K be continuous open homomorphisms with closed images. In
what circumstances can Lλ(G) and Lλ(H) be made L^iQ-bimodules
relative to the mappings ΘG and ΘMΊ When these circumstances obtain,
what is %JlD, where D = LX(G) ® L I ( * ) L^H)*! IS there a group © such
that D = Lxί®)?

We shall give answers to these questions in the following sections.

2* Examples* (i) Let G and K be compact abelian groups and
let ΘΘ:G^K be epic. Then define LX(G) as an L1(iί)-bimodule by:

ca(ζ) =
Θ

where a e LX(G), c e Lλ{K) and g(ξ) = c(0*(£)), cty) = c(0*ty)). (The
above is defined first for continuous functions and then for arbitrary
integrable functions by standard extension techniques.) Then

\\ca\\ = || c * a \\ ̂  \\c\\ \\a\\ .

However, the map F:c—>\ c(ζ1)dξ1 is a translation-invariant integral

on Lλ(K). Thus we may and do assume

and we conclude: \\ca\\ ̂  11 c 11 11 a \\.
(ii) Let G = Z" = 9t = the set of real numbers. Let ^0(ί) = 2ζ.

Then for c e LX(K) and α e LX(G) let

ca((ξ) = \+~a(ζ - ζ1)

In this case || ca \\ ̂  £|| c \\ \\ a \\.
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(iii) If ΘG is not epic F: Lλ{K) --> © as defined in (i) need not be
an invariant integral. For example, if G — {0} and if K is an arbitrary
nontrivial compact abelian group, then, for c continuous,

F(c) = \ c(ξ)dζ = c(0) .

If ζ0 G K and if co(ζ) = c(ζ + ζ0), then

F(c0) = co(O) = c(ζ0) .

Thus, choosing c continuous and such that c(0) Φ c(ζ0) we find F is
not translation-invariant.

(iv) If G is not compact, if K is compact and even if θθ is epic,
then the action of LX(K) on LX(G) is not definable in the manner con-
sidered. Indeed, if c(ζ) = 1, and if aeLλ(G) we see

cα(f) = ( α(£ - ξ1)c(ζ1)dξ1

= \ a(ξ)dζ ,

since c'ίίi) = c(θΘ(ξ1)) = 1. If, as we may, we choose α so that

( α(ί)df Φ 0 ,

then cag Lλ(G)t

REMARK. Even if both G and K are not compact but if F is an
invariant integral, the kernel of θQ is compact. To prove this we
assume, as we may, that Haar measures are adjusted so that

K
(ζ)dζ = \ c(ξ)dξ = \ c(V)dV .

Furthermore, we may assume Haar measures on K and on ker (θθ) = Nθ

have been adjusted so that for a e Lλ{G)

where ζ is the variable of integration on K = G/NG. Since

\ a(ξ + p)dρ

is constant on cosets of NΘ, it may be regarded as a function of ζ.
Then we find for any nontrivial nonnegative c in LX{K):
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c { θ σ ( ζ + p ) ) d p ) d ζ

= ( c(ζ)dζλ Up

since p e ker ΘG. Hence Nθ must be compact, since otherwise

\ Up = + oo = ί C(ζ)dζ = \ C(ζ)dζ ,

a contradiction,

3* The main formula* In view of the conclusions of the
preceding section, we posit the following situation:

(i) G, H, K are locally compact abelian groups.
(ii) θθ: G—>K,ΘH:H—>K are continuous open epimorphisms.

(iii) Lλ(G) and L±(H) are bimodules over Lλ(K) according to the actions:

ca(ξ) ~ c*a

cb(η) = c*b

where a e LX(G), b e (H) and c e Lλ{K). (Recall that

c(ξ) - c(θ*(ζ)), c(η) = c(θs(V)) .)

(iv) Haar measures are adjusted so that the functionals

c(θG(ζ))dζ = c(ξ)dξ ,
? JG

c(θH(η))dη = \ c{η)dη

are translation-invariant integrals.
The argument used in the remark following (iv) of §2 shows:
If F is an invariant integral then

\ I c(ξ) \dξ + \ i c{η) \dη
JG JB

if and only if Na and NH are compact.
In effect, we assume G, if, K are locally compact abelian groups

and if is a noncompact quotient of both G and H by compact (normal)
subgroups Nθ and NH.

Thus there is a wealth of concrete examples of the type that
concerns us, e.g., G = K x NΘ, H = K x NH where Nθ and NB are
compact, K is locally compact and not compact and all groups are
abelian.

In these circumstances
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D = LX{G) ®Lliκ) LX(H) = LX(K) .

The formula is the conclusion of a sequence of lemmas. We re-
call that an interpretation of the results quoted in §1 may be given
as follows:

(a)

(b) There are

and

% - {(«, β

Furthermore

ZL

mappings

μ:G~-+k

):aeG~,βt

TJ^
is) — -̂ ^

Γ U {null

uT U {null

map}

map}

= v(β) Φ null map} .

caT(a) = <Γ(a)c~{μ{a)), a e A(G), c e ̂ ( i f ) ,

), b e LX(H), c e Lx(

Although we need never consider a pair (α, β) such that μ(a) =
v(/9) = the null map sending Lλ(K) into 0, we shall have occasion to
consider μ(a) for all a and v(/9) for all β. Thus we shall interpret
c~(μ(a)) and c"(y(/3)) to be 0 if μ(a) = v(/5) == the null map, even
though, since <Γ is a function on i f , "<Γ(null map)" is not defined.

LEMMA 3.1. The map Lλ{K) B c(ζ) -> c(f) = c(θθ(ζ)) e L^G) is an
isometric monomorphism. The image LX(K)Θ of this map is a closed
ideal in LX(G). Finally, μ~ι {null map) = h{Lx{Ky) = hull {Lλ{K)Q).

Proof. The algebraic and metric properties of the mapping are
clear. To show Lλ{K)Q is an ideal (as the image of a complete space
under an isometry Lλ{K)Q is closed) we consider c in Lλ{K) and a in
Lλ(G). Then

a*c = \ a(ζ - ξ1)c(θΘ(ξ1))dξ1

= \ a(Qc(θG(ζ - ζ2))dζ2 .

If d(ζ) = 1 a(ξ2)c(ζ — θθ(ξ2))dξ2, then cx is in Lλ(K) and cλ = a*c.
JG

Finally, if μ(a) = (null map), then c~(μ(cή) = 0 for all c in Lλ(K).



246 BERNARD R. GELBAUM

However, for a in Lλ(K) and such that aΓ(a) Φ 0,

caT{a) = <Γ(a)c~(μ(a)) = <Γ(a)\ c(ζ)W7ΰ)dζ

or

0 = c~(μ(a)) = c~(a) .

Thus aehiL^K)0), i.e., μ~λ (null mκp)<zh(Lλ(K)θ).
Conversely, if aeh{Lx{K)Q), then c"(a) = 0 for all c in LX(K).

The above formulas show c~(μ(cή) = 0 for all c in Lλ{K), whence
μ(a) — (null map) and we conclude μ"ι(wj3λ map) = h(Lλ{K)θ).

Let §G, ΘH be the duals of the maps ΘG, ΘH. Thus, e.g., (ζ, θG(y)) =
(^(f), 7) for all 7βK. If S is a set in G, let SL be the "annihilator"
of S, i.e., the set of α in G such that (s, a) = 1 for all s e S. We
prove

LEMMA 3.2. (a) NGL = θGίt;

(b) G = NG1 U h(Lx(K)G), 0 = iVG1 Π HL.iKf)

(c) μ: NG± —> K is an ίsomophism [6, p. 103].

Proof, (a) If f eNG then 0G(f) = identity and (θG(ζ), 7) - 1 for
all γ e i Thus £%£) c i V σ i . If α̂  6ΛΓ^, then for all f eN G , (f, α) - 1.
If a£θG{K), then, since #^(i?) is closed, there is a ζ0 such that

, a) Φ 1, (f0, ^ ( ^ ) ) = 1 - (0σ(fo), ^ ) , i.e.,

a contradiction. Thus ^(IΓ) = ΛΓG1, /̂ (ΛΓG1) = μ(θG{K)) = K.

(b) and (c) If ao£NGA- then μ(a0) = (null map). For if aQ<£NβL,

then α0 may be regarded as a nontrivial character of the compact

(ξ + p, ao)dρ = \ (ί, α0)(/θ, ^0)^^ = 0. Hence if

c e Lλ{K) then

c~(μ(aQ)) = \ c(θG(ζ))<ΣΈJdξ

= \κ

c(θ(\Nβ + P, ao)dp)dζ = 0 .

Thus μ{a0) = (null map), and G\NGl c/i(L,(ii) c). On the other hand
if a is in h{Lr(K)a) then α is not in Nβl. Otherwise, a may be
viewed as some 7 in K and thus for c in Lγ{K) we have
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c-(a) = 0 = ( c(θG(ξ)){ξ7a)dξ
JG

= ί c(ζ)(ζ^ήdζ\ Idp .

Hence c~(y) = 0 for all c in LX(K), a contradiction. Thus G/NG1 =
h(Lλ(K)G) and we conclude the truth of (b).

Next, if θG(j) = a then for c in Lλ(K) and a in LX(G)

r
ca (a) = a~(a)\

JC

Hence, c~(μ(a)) = c"(τ) and μ(a) = 7 = μθG(j).
Clearly

= μ6β(yi)μdσ(Ύ*)

Thus /̂  is an epimorphism of ΘG{K)~ onto ϋΓ~ and (̂9^ is the identity.
It follows that μ is one-to-one on ^( i f ) and furthermore that θGμ
is the identity on ΘGK: θGμ0G(y)) = ^(7) .

Combining our results to this point we see that

mD =• diag (K~ x iΓΛ) ^ ίΓΛ .

It follows that K is a reasonable candidate for the group ® such that
D = Li(©). Indeed, if © is such a group then ©^ = SJî . Since
ϊΰlD = K", we conclude ® = K.

We shall now define a map T: D—> LX(K). As usual T is defined on

, Lλ{H))

) x

^ Σ
( 6 )

[2, 3]. Thus if c(α, 6) is the function taking the value c at (α, 6)
we set

T(c(a, b)) = \ ca(ζ + ρ)dp*\ b{η + σ)dσ

where NH = ker(^^). We note that each of the integrals above is a
function on K and hence so is the indicated convolution. It is a
simple matter to verify that when T is extended by linearity it is a
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bounded epimorphism of the algebra % onto Lλ(K) and that T annihi-
lates the reducing ideal /, modulo which the algebra % is D. (The

r
surjectivity of T follows from the fact that the integrals I = TG

and I = Tπ are epimorphisms, from a simple application of approx-
J NH

imate identities and from P. J. Cohen's factorization theorem [1, 3, 4].)
We show now for T, which may be regarded as a mapping of D

onto Lλ{K),

LEMMA 3.3. T is an isomorphism if and only if D is semisimple.

Proof. Clearly, if T is an isomorphism then D is semisimple.
Conversely, if D is semisimple and if T(z) = 0, where z —

Σ ^ i en(αn <g) δw) [2, 3], then for any 7 in K~, T~(z)(y) = 0. Thus

= Σ £(7)Tβ(a.)(7)TB(bn)(Ύ) = 0

However,

Ta(a)(Ύ) = Γβ(o)(ζ)(ζ, Ί)dr

a(ξ + p)dp)(ζ,y)dζ

= oT (a)

where a = θa(y). After similar arguments about TB we find

where β = ^ ( 7 ) . In other words T~(z)(y) = z~(a,β) where ^e(α) =
7(/5) and (α, /5) corresponds to an element of TlD. Since ΓΛ(«)(7) = 0
for all 7, we find z~(a, β) = 0 for all (a, β) corresponding to elements
of ffllD. The semisimplicity assumption now shows z = 0 and hence
that T is an isomorphism.

We now conclude by proving

LEMMA 3.4. D is semisimple.

Proof. Let z belong to the radical of D. As in [3, 4] we may
assume that z is of the form Σ"=i cn(&n 0 bn) where, for fixed compact
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sets Ϊ7, F, W in G"\ I Γ \ 2?Λ and for all n, support <C(α) c U, support
bn(β) c F, and support <C(7) c W. Furthermore, we may assume that
each cn is of the form cnl * cn2 * cnZ and thus in effect that

= Σ cnl(cn2an (8) c w 8 δ Λ )

where support <&(7) c ΫF.
Since Lλ(K)G is an ideal in Lλ(G) and since there is a correspond-

ing statement for L^K)*, we conclude that there are elements dn2, dn3

in Lλ(K) such that dw2(f) = cn2an(ζ), d^{rj) = cn,bn{η).
Furthermore, d2(a) = dn2(μ(a)hd2(β) = dn?(v(β)), and C2(τ) ^ 0,

or Cs(7) ^ 0 implies d22(μθG(y)) = d2ΦG(Ύ)) Φ 0, etc., i.e., that Yeμ
(support d^), etc. Thus there is a fixed compact set Y containing
the supports of all c2, <&, C3, d^, d 2̂, d 3̂. Hence there is a fixed c in
Li(iί) such that c*(y) = 1 on Y, support c~(y) is compact and

0 ^ cΛ(7) ^ 1 .

For this c it is true that cnj = cnj*c, dnj = dnj*c,j = 1, 2, 3. Thus
we find

OO CO

z = Σ C - K ® &») = Σ cni(cn2αn 0 cΛ8δw)
w = l % = 1

OO CO

= Σ cnl(dn2 (g) d w 3 ) = Σ cw l(cϋΛ 2c (g) d w 3 c)
l 1

However, for all 7 in

Furthermore

dUO - ί an{ξ)oΛί - θG{ζ))dζ

dUQ - ( M ί ) α

Thus

C2(7) =

and similarly d^(τ) = δ«(^(7))c,s(7). We see then that
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and since μθβ(y) — vθB(y) — y we conclude that

Σ cZ(7)d«(y)dZ(7) = fψ(7), θ*{y)})

which is zero as a consequence of our assumption. Thus z — 0 and
the semisimplicity of D is established.

Hence, in the context indicated above and suggested by the diagram

G H

K

there obtains the formula

LL(G) ®Lliκ) Lλ{H) =
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