Pacific Journal of Mathematics

WEIERSTRASS POINTS OF PLANE DOMAINS

NEWTON SEYMOUR HAWLEY

Vol. 22, No. 2 February 1967

WEIERSTRASS POINTS OF PLANE DOMAINS

N. S. HAWLEY

In this paper examples will be given of plane domains which have interior points as Weierstrass points.

The notion of a Weierstrass point of a Riemann surface (or an algebraic curve) is an old one, having been introduced more than a century ago. Surprisingly enough, some of the simplest and most immediate questions concerning Weierstrass points remain unanswered. A beautiful account of the fundamental theory of Weierstrass points can be found in [2]. Nevertheless, we shall, for the sake of convenience, recapitulate some of the basic facts concerning Weierstrass points.

Let \mathscr{R} be a closed Riemann surface of genus p>1 and let u_1, \dots, u_p be a basis of linearly independent Abelian integrals of the first kind on \mathscr{R} . Consider

$$W_a = egin{array}{c} rac{du_1}{dz_lpha} \ , \ \cdots, rac{du_p}{dz_lpha} \ dots \ rac{d}{dz_lpha} \ rac{d}{dz_lpha} \ , \ \cdots, rac{d^pu_p}{dz^p_lpha} \ , \ \end{array} ,$$

defined in the neighborhood U_{α} of the local uniformizer z_{α} . If $U_{\alpha} \cap U_{\beta}$ is not empty and z_{β} is the uniformizer of U_{β} , then in the neighborhood $U_{\alpha} \cap U_{\beta}$ we have

$$W_{\scriptscriptstylelpha} = \left(rac{dz_{\scriptscriptstyleeta}}{dz_{\scriptscriptstylelpha}}
ight)^{rac{p(p+1)}{2}}W_{eta}$$
 .

Thus $\{W_{\alpha}\}$ defines an everywhere finite differential of dimension

$$\frac{p(p+1)}{2}$$

on \mathscr{R} . (Some authors refer to the degree of a differential rather than its dimension, others speak of its order. See [4].) Such a differential will have

$$(2p-2)\cdot \frac{p(p+1)}{2} = (p-1)p(p+1)$$

zeros (counted with proper multiplicity). These zeros are the Weierstrass points of \mathcal{R} . They do not depend on the particular basis

 u_1, \dots, u_p chosen but are a fixed set of points of \mathcal{R} ,

$$(p-1)p(p+1)$$

in number.

In order to introduce another basic (and defining) property of Weierstrass points, we consider the following problem: for a given point $q \in \mathscr{R}$ let us try to construct on \mathscr{R} a function which is complex analytic and regular everywhere on \mathscr{R} except at q and at q has a pole of order n. For all but a finite number of points, viz, all but the Weierstrass points we must have $n \geq p+1$, but at each Weierstrass point we may choose an $n \leq p$. We shall return to this interpretation later. The connection between the two definitions is easily established, e.g. see [2].

There is still a third fundamental definition of Weierstrass points which we shall use. This definition employs the "Noether mapping" v of a nonhyperelliptic Riemann surface \mathscr{R} of genus p into $P_{p-1}(C)$, the complex projective space of dimension p-1 (see [1]), and can only be employed if \mathscr{R} is nonhyperelliptic. The mapping v is accomplished by selecting a basis of Abelian differentials of the first kind on \mathscr{R} and considering them as homogeneous coordinates in $P_{p-1}(C)$. Then $v(\mathscr{R})$, the image of \mathscr{R} in $P_{p-1}(C)$, is a nonsingular curve of degree 2p-2. The Weierstrass points of \mathscr{R} are those point of $v(\mathscr{R})$ at which the osculating hyperplane is hyperosculating, and the degree of the hyper-osculation is the order of the Weierstrass point (see [2]). So, for example, if \mathscr{R} is of genus 3 and nonhyperelliptic then p-1=2 and $v(\mathscr{R})$ is a plane curve of degree 4 and the Weierstrass points are the inflection points of $v(\mathscr{R})$.

Actually, what we are going to consider are Weierstrass points on plane domains, and we have only defined them so far on compact Riemann surfaces. But these definitions can be extended to plane domains by employing a technique due to Schottky, viz. the technique of doubling a plane domain (see [5] and [4]). We consider here only domains of finite connectivity which are bounded by analytic Jordan curves. Thus, if $\mathscr D$ is a plane domain with p+1 boundary curves, its double is a compact Riemann surface $\mathscr R$ of genus p. $\mathscr D$ and its boundary curves are contained in $\mathscr R$ as "half" of the Riemann surface; the other "half" $\mathscr D^*$ has the same boundary curves. There is an anti-analytic involution of $\mathscr R$ onto itself which maps $\mathscr D$ anti-conformally onto $\mathscr D^*$ and leaves the boundary curves pointwise fixed. All of those Riemann surfaces of genus p which are the doubles of plane domains can be characterized in a way which will prove very useful in this study (see [1]).

Let us denote the involution on \mathcal{R} , referred to above, by * and

 $z \in \mathcal{D}$, we shall denote its image in \mathcal{D}^* under * by z^* . Thus, if B denotes the set of points of the boundary curves of \mathcal{D} , then $z = z^*$ is equivalent to saying that $z \in B$. We can now utilize this fact to show that if f(z) is any function on \mathcal{R} we can construct another function g(z) on \mathcal{R} which is real on B. We do this as follows: define

$$g(z) = f(z) + \overline{f(z^*)}$$
.

Then

$$g(z^*) = \overline{g(z)}$$
,

therefore, if $z_1 \in B$, $g(z_1)$ must be real.

If v_1, \dots, v_p is a basis of Abelian integrals of the first kind on \mathcal{R} , then so is u_1, \dots, u_p , where

$$u_{i}(z) = v_{i}(z) + \overline{v_{i}(z^{*})}, j = 1, \dots, p$$
.

But then each $u_j(z)$ is real on B, up to an additive constant; therefore, $(du_j/dz)\cdot(dz/ds)$ is real on B, where $dz/ds=\dot{z}$ is the derivative of z with respect to arc length, i.e. the unit tangent to B at the point in question (each curve of the boundary is oriented naturally by the orientation of \mathcal{D}).

We can now consider

$$W(z) = egin{array}{ccc} \dfrac{du_1}{dz} \ , \ \cdots, \dfrac{du_p}{dz} \ dots & dots \ \dfrac{d^pu_1}{dz^p} \ , \ \cdots, \dfrac{d^pu_p}{dz^p} \ \end{array} ,$$

and we see that W(z) $(dz/ds)^{p(p+1)/2}$ is real on B. The Weierstrass points of $\mathscr D$ are by definition those points of $\mathscr D$ for which W=0. But it is clear that if $z\in\mathscr D$ is a Weierstrass point of $\mathscr R$, so is $z^*\in\mathscr D^*$. So at most, half of the Weierstrass points of $\mathscr R$ can lie in $\mathscr D$. We say "at most" half instead of "exactly" half, because some of the Weierstrass points may lie on B and so do not lie either in $\mathscr D$ or $\mathscr D^*$. It is just this point which we wish to discuss.

2. A question. The question has been asked whether or not all Weierstrass points of plane domains lie on the boundary. Indeed, if the plane domain is hyperelliptic (i.e. if its double is a hyperelliptic Riemann surface), this is actually the case. Since all previous examples (of which the author knows) of plane domains, in which Weierstrass points have been located, are hyperelliptic, the question

might be expected to have an affirmative answer on the basis of experience.

But let us phrase the question more explicitly in another way.

QUESTION. Do plane domains exist which have interior points as Weierstrass points? What connectivity can they have?

3. An answer. In this section we shall construct an example of a plane domain which answers the question in §2 above. In fact, we shall show that there exist plane domains of every finite connectivity greater than three which have interior Weierstrass points.

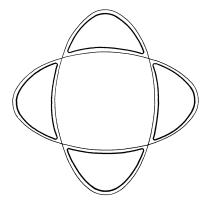
We construct the first example, a domain of connectivity four, from an algebraic plane curve—the domain is to be conformally equivalent to "half" of the Riemann surface of this curve. The construction proceeds as follows. Let us define

$$egin{align} arPhi_1&=rac{x^2}{a^2}+rac{y^2}{b^2}-1$$
 , $arPhi_2&=rac{x^2}{b^2}+rac{y^2}{a^2}-1$, $arPsi_arepsilon=arPhi_arepsilon+arphi_arphi+arphi_arphi$

where a, b, ε are real, $\varepsilon > 0$ and $a \neq b$ (for example let a = 2, b = 1). Then the curve

$$\Psi_{s}=0$$
,

which is pictured below (with the curve $\mathcal{O}_1\mathcal{O}_2=0$ drawn in lightly to show how $\Psi_{\varepsilon}=0$) arises is a nonsingular plane curve of degree 4. Of course $\Psi_{\varepsilon}=0$ gives rise to a nonsingular algebraic curve of degree 4 in $P_2(C)$ obtained by making the polynomial Ψ_{ε} homogeneous and using complex homogeneous coordinates. Let us denote this curve by \mathscr{C} and the curve in $P_2(R)$, the real projective plane, by \mathscr{C}_R . Thus \mathscr{C}_R arises from



 $\Psi_{\varepsilon}=0$ upon introducing homogeneous coordinates. Also

$$\mathscr{C}_{R} = \mathscr{C} \cap P_{2}(R)$$
,

i.e. it is that part of \mathscr{C} which lies in $P_2(R)$.

According to a theorem of Harnack, the curve \mathscr{C}_R (and hence \mathscr{C}) must be of genus at least 3 (because \mathscr{C}_R has four components). On the other hand \mathscr{C}_R , or \mathscr{C} , is of degree 4 so can have genus at most equal to 3. Since the genus must then be exactly 3 and the degree is 4, it is clear that \mathscr{C} is nonsingular. For the theorem of Harnack, see [3, p. 257].

Let \mathscr{R} denote the Riemann surface of \mathscr{C} ; then \mathscr{C} is the image of \mathscr{R} under the Noether imbedding v referred to earlier. This is easily seen as follows: let x_0, x_1, x_2 be homogeneous coordinates in $P_2(C)$ such that

$$x = \frac{x_1}{x_0}$$
 , $y = \frac{x_2}{x_0}$,

then x_0 , x_1 , x_2 are linearly independent homogeneous polynomials of degree 1; and since the degree n of the nonsingular curve $\mathscr C$ is 4, 4-3=1, i.e. the adjoint curves of degree n-3 are lines, we see that x_0 , x_1 , x_2 restricted to $\mathscr C$ form a basis of differentials of the first kind on $\mathscr C$, hence $\mathscr C$ is then the Noether imbedding, with respect to this basis, of its Riemann surface.

There is a characterization of those Riemann surfaces which are the doubles of plane domains [1]. This characterization says that a Riemann surface \mathscr{R} of genus p is nonhyperelliptic and the double of a plane domain if and only if the image of \mathscr{R} in $P_{p-1}(C)$, under the Noether imbedding, intersects $P_{p-1}(R) \subset P_{p-1}(C)$ in p+1 mutually disjoint Jordan curves. This characterization shows us immediately that the Riemann surface \mathscr{R} of the curve \mathscr{C} is the double of a plane domain, and is nonhyperelliptic.

The points of \mathscr{C} and the points of \mathscr{R} are in a natural one to one correspondence and may therefore be identified. The Weierstrass points of \mathscr{R} then coincide with the inflection points of \mathscr{C} . These number 24 when counted with proper multiplicity. The order of a Weierstrass point and the order of inflection of an inflection point are the same.

From the illustration of \mathcal{C}_R it is clear that it has exactly eight inflection points; and the curvature changes sign at each of these points. Since the curvature does change sign, the order of each inflection point must be odd. By the symmetries of \mathcal{C}_R all the inflection points must have the same order; therefore, the order must be either 1 or 3. If the order were 3, however, each Weierstrass point

of \mathscr{R} would be of maximum order, which would mean that \mathscr{R} would be hyperelliptic. Since \mathscr{R} is not hyperelliptic (as we have seen above), we know that the order of each inflection point is 1. This means that \mathscr{C} has 16 inflection points (counted with proper multiplicity) which do not lie on \mathscr{C}_{R} .

Now let \mathscr{D} be a plane domain whose double is \mathscr{R} . (How to make an actual determination of \mathscr{D} from a knowledge of \mathscr{R} or \mathscr{C} is discussed in [1]). Then we have shown that \mathscr{D} has 8 Weierstrass points (counted with multiplicity) in its interior. This answers the question of existence in the case of quadruply connected domains. But since a Weierstrass point will move an arbitrarily small distance under a sufficiently small deformation of the conformal structure of \mathscr{D} (see [4]), we see that the existence question is answered for domains of connectivity n for every $n \geq 4$. For we can punch as many holes as we please in \mathscr{D} and if we make them all small enough, we can move our original 8 Weierstrass points as little as we please. (Of course, in the process of hole punching we acquire many more Weierstrass points.)

We have now answered the question asked in § 2. But the discussion there prompts us to ask a further question: If a plane domain has all of its Weierstrass points on the boundary, is it necessarily hyperelliptic? We do not as yet have an anwer to this question.

References

- 1. N. S. Hawley and M. M. Schiffer, Riemann surfaces which are doubles of plane domains, Pacific J. Math. 20 (1967), 217-222.
- 2. A. Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math Annalen 41 (1893), 403-442.
- 3. S. Lang, Introduction to Algebraic Geometry, New York, 1958.
- 4. M. M. Schiffer and D. C. Spencer, Functionals of Finite Riemann Surfaces, Princeton, 1954.
- 5. F. Schottky, Über die conforme Abbildung mehrfach zusammenhängender ebener Flächen, Crelles Journal 83 (1877), 300-351.

Received July 8, 1966. This work was supported in part by a National Science Foundation grant GP 4069.

STANFORD UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

J. P. JANS

University of Washington Seattle, Washington 98105 I. Dugundji

University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 22, No. 2

February, 1967

Paul Frank Baum, Local isomorphism of compact connected Lie groups	197
Lowell Wayne Beineke, Frank Harary and Michael David Plummer, On tacritical lines of a graph	205
Larry Eugene Bobisud, On the behavior of the solution of the telegraphist's	
equation for large velocities	213
Richard Thomas Bumby, Irreducible integers in Galois extensions	221
Chong-Yun Chao, A nonimbedding theorem of nilpotent Lie algebras	231
Peter Crawley, Abelian p-groups determined by their Ulm sequences	235
Bernard Russel Gelbaum, Tensor products of group algebras	241
Newton Seymour Hawley, Weierstrass points of plane domains	251
Paul Daniel Hill, On quasi-isomorphic invariants of primary groups	257
Melvyn Klein, Estimates for the transfinite diameter with applications to	
confomral mapping	267
Frederick M. Lister, Simplifying intersections of disks in Bing's side	
approximation theorem	281
Charles Wisson McArthur, On a theorem of Orlicz and Pettis	297
Harry Wright McLaughlin and Frederic Thomas Metcalf, An inequality for	
generalized means	303
Daniel Russell McMillan, Jr., Some topological properties of piercing	
points	313
Peter Don Morris and Daniel Eliot Wulbert, Functional representation of topological algebras	323
Roger Wolcott Richardson, Jr., On the rigidity of semi-direct products of Lie	
algebras	339
Jack Segal and Edward Sandusky Thomas, Jr., Isomorphic	
cone-complexes	345
Richard R. Tucker, <i>The</i> δ^2 -process and related topics	349
David Vere-Jones, Ergodic properties of nonnegative matrices. I	361