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CHARLES W. MCARTHUR

In this paper a direct proof of the following theorem of
Orlicz, Pettis, and Grothendieck is given.

TaeoreM 1. In a locally convex Hausdorff space each
subseries of a series converges with respect to the initial
topology of the space if and only if each subseries of the
series converges with respect to the weak topology of the
space.

In a second theorem each of three additional conditions
is shown to be equivalent to subseries convergence in complete
locally convex Hausdorff spaces. Two of these equivalence
are known for Banach spaces. The third condition, a weak
compactness condition on the unordered partial sums of the
series, is new even for Banach spaces. It is a consequence
of the first theorem that a weak unconditional basis for a
weak sequentially complete locally convex Hausdorff space is
an unconditional basis.

Theorem 1 was first proved by Orlicz [8, Satz 2] for weakly
sequentially complete Banach spaces. Banach [1, p. 240] noted the
hypothesis of weak sequential completeness was unnecessary. A proof
of Theorem 1 for Banach spaces was given by Pettis [9, Th. 2.32].
Grothendieck [4, Cor. 2, p. 141] obtains Theorem 1 for locally convex
spaces as a special case of a theorem on vector valued integrals.

The proof of Lemma 3 was suggested by the referee in place of
a longer proof by the author. It uses a result of a paper of James
[5] which appeared after this paper was submitted.

For clarity we now state the basic definitions in more detail. If
E is a Hausdorff linear topological space with topology .7~ then a
series >'2.x; in E is subseries convergent relative to 7~ if and only
if:

(A) Corresponding to each subseries 3.7, there is an element
¢ ¢ E such that lim, 37 »,, = x, the convergence being relative to .7,

Let E* denote the space of .7 -continuous linear functionals on
E. Then Y\, is weak subseries convergent if and only if:

(B) >\o.x; is subseries convergent relative to the w(H, E*)
topology for E.

For a series >..x; in a linear topological space (F,. 7 ) let
S = {3ie.4;: 0 finite} and consider the following conditions where
sp {x;} denotes the closure, relative to .77, of the linear span of {x;}:

(C) S is totally bounded relative to .7
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(D) Whenever {f,} is an equicontinuous sequence in E* such
that f,(x) — 0 for all @ csp {x;} then f,(x) — 0 uniformly on S.

(E) The w(E, E*) closure of S is w(E, E*) compact.

In this paper we also prove,

THEOREM 2. For a series in a locally convex, complete, Hausdorff
space the conditions (A), (B), (C), (D), and (E) are equivalent.

The equivalence of (A), (B), (C), and a variant of (D) for series
in Banach spaces is known (see, e.g., [7]).

2. Proof of Theorem 1.

LemmA 1. If >o.x; is a sertes in a locally convex Hausdorff
space E which satisfies the condition (D) then it is subseries Cauchy.

Proof. We first observe that if M c E, then M is bounded if,
whenever {f,} is an equicontinuous sequence in E* such that
lim f,(x) = 0 for all xeE, it follows that lim f,(x) = 0 uniformly
on M. For if M is not bounded and U is a closed convex circled
neighborhood of zero that does not absorb M, then for each integer
n there is an f,e E* and an «,€ M such that |f.(x)| < 1/n on U
and f,(x,) =1. The sequence {f,} is equicontinuous and lim f,(x) =0
on E but not uniformly on M. We observe further that if >\,
satisfies condition (D) then S is bounded from which it follows that

“ | flx)| < + o for each fe E*.

We now prove Lemma 1 by showing that if >, x; is not subseries
convergent and Y2, | f(x;) ]| < + o for each f e E* then condition (D)
does not hold. Suppose there exists a subseries 3}, x,, whose sequence
of partial sums {37, «, } is not a Cauchy sequence. Thus there exists
a closed convex circled neighborhood V of zero and an increasing
sequence {p,} of positive integers such that for each =,

Pn+1
S, = 2, X, €V.

i=ppt+1
Then, [6, 14.4, p. 119] for each = there exists an element f,c E*
such that f,(s,) =1 and sup{| f.(x)|:2€ V} <1, Thus the sequence
{f.} is equicontinuous. Since {f,} is equicontinuous it is pointwise
bounded on E. Using this and the diagonal process we select a subse-
quence {f, } which has [6, 17.4, p. 155] a w*-cluster point f, with the
property that lim, f, (x) = fy(x), xesp[x;]. From the hypothesis (D)
we have that lim, f, (¢) = fi(x) uniformly for xeS. Given ¢>0
there exists N such that
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3 ifdm)f < ez

Thus, for m sufficiently large, |fi(s,,)| <é¢/2. Now there exists
N’ > N such that if m = N’ then |f, (%) — fi(x)| < ¢/2 for all x€S.
Thus, for m sufficiently large,

[fnm(snm) | é Ifnm(snm) - fo(snm) l + |f0(snm) | < €

but this contradicts f, (s, ) =1 for all m,

It is well known [6, 17.8, p. 156] that each weakly compact
subset of a locally convex space is complete. The proof of the
following lemma follows the same line of argument as the above
mentioned result, so is omitted.

LEMMA 2. Let (E, .7 ) be a locally convex space. If {x.} is a
Cauchy net in E relative to the topology 7~ and if xeKE is a
w(kE, E*)-cluster point of {x,} then x,— x in the topology .7 .

Proof of Theorem 1. It is clear that (A) implies (B). We now
assume (B) and show that (A) follows. It is clear that when (B)
holds we have Y2, | f(x,)| < + o for each fcE*, ie., {f(z)} is
an element of (I) for each fe E*. The space (I) here is either real
or complex depending on whether the scalar field of E is real or
complex. For either real or complex (l) sequential convergence in the
w((l), (1)*) topology for (I) implies convergence in the norm topology
of (I) and elements of the form {¢;}, where ¢, = =1 or 0, are funda-
mental in (1)*. Let {f,} be an arbitrary sequence in E* such that
lim, f,(x) = 0 for all xesp{x}. Let N, = {fu(®)}ico. We will show,
following Pettis [9], that

(F) lim, X2, | fu(x)| =0, i.e., A,— 0 in the norm topology of
(1), by showing that

lim 3} &, /,(v,) = 0

for each sequence {¢;}, where ¢; = &1 or 0. For such a sequence {¢;}
let 0+ ={t:6,=0} and 06— = {i:¢, < 0}. By (B) there exist z,, and
%, such that f(x,,) = Die,s f(@) and flx,_) = Die,—f(x;) for all
feE*. Now w,, and ,_ are elements of sp[;]. Suppose «,, ¢ sp [2;].
Then there exists f e E* such that f(x,,) = 0 and f(x) = 0 for x € sp[«;].
This, however, implies the contradiction f(x,,) =0 since f(z,+) =
Sieo+f(%;) where x; esp[a;]. Hence, it follows that

lim S, & fo(w;) = im fo(2er — @) = 0.

n o i=1
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Thus we have shown that (F) holds, from which it is evident that
lim, f,(x) = 0 uniformly for xe S. It now follows, by Lemma 1, that
S x,; is subseries Cauchy. Then from (B) and Lemma 2, 32, «, is
subseries convergent,

3. Proof of Theorem 2.

LeMMA 3. Let E be a complete Hausdorff locally convex space
and let K, be a closed separable subspace of E. Let M be a subset
of E, such that whenever {f,} is an equicontinuous sequence in E*
such that lim, f,(x) = 0 for all xeE, it follows that lim, f,(x) = 0
untformly for xe M. Then the weak closure of M 1is w(E, E*)
compact.

Proof. If the weak closure of M is not weakly compact then,
by the result of James [5, Condition (9), p. 104], there is a positive
number ¢, an equi-continuous sequence {f,}, and a sequence {z,} from
the weak closure of M such that

| faz)| >¢ if m<k and f.(2)=0

if >k, Let {z,} denote a sequence in E, which is dense in FE,.
Using the diagonal technique we select a subsequence {f,;} of {f.}
which has a w*-cluster point f, such that lim; Sui(@n) = Fo(@n), m € w.
Hence, lim; f, (x) = f(») for all xze K, We then have from the
uniformity hypothesis that lim; f, () = fi() uniformly for ze M and
hence uniformly for z in the weak closure of M. Since z, is in the
weak closure of M this contradicts the fact that |f, ()] >¢ if
n; < k and £, (2,) = 0 if n; < k.

LEMMA 4. For a sertes X2, x; in a locally convexr Hausdorff
space E, (A) implies (C) tmplies (D) and (E) implies (B).

Proof. (A) implies (C): Subseries convergence implies unordered
convergence [2, p. 59]. Let U be a neighborhood of 0. Then there
exists a finite set o, of positive integers such that if o is a finite
subset of positive integers and ¢ O o, then

Z x,; - Z x,; € U .
i€0 i€ag
Let B = {3e, %;: 0 C o} U{0}. Observe that B is a finite set and
for an arbitrary finite subset ¢ of positive integers
Mx,eB+U.

1€0
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(C) implies (D): In general totally bounded sets are bounded. Also
[6, 8.17, p. 76] an equicontinuous family of linear functionals on E
which converges pointwise on a totally bounded set to an element
f e E* converges uniformly to f on that set. (E) implies (B): If
> %, is any subseries and y is a w(k, E*) cluster point of {377, ,},
then y is a w(E, E*) sum of .2, x,,, since if

]f<g”’%> — )| < —;—e
and
iélvlf(xi)l < %5,
then
’f@;“ki) - f('y)' <e
if » > N.

Proof of Theorem 2. By Lemma 3, (D) implies (E). By Lemma
4, (E) implies (B). Conditions (A) and (B) are equivalent by Theorem 1.
By Lemma 4, (A) implies (C) and (C) implies (D).

4. Applications. Suppose that A is a set, that > is a o-field
of subsets of A, and m is an additive set function defined on 3 with
values in a locally convex Hausdorff space E. Then m is weakly
countably additive if and only if

5% fm(4) = fm(() 4,)

for each fe E* and each sequence of disjoint sets A4; in >.,. As an
immediate consequence of Theorem 1, we obtain

COROLLARY 1. A weakly countable additive set function m defined
on a o-field 3 with values in a locally convex Hausdorff space s
countably additive.

Corollary 1 is a generalization of a theorem of Pettis [9, Th.
2.4; 3, Th. 1, p. 318] for Banach space valued set functions.

A sequence {z;} in a Hausdorff linear topological space (&, .7 ) is
a basts if and only if corresponding to each xc E there is a unique
sequence of scalars {a;} such that z = lim, 3%, a;x;, the convergence
relative to .. A basis is unconditional if for each xc E every
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rearrangement of the basis expansion for x converges. It is known
that a sequence {x;} in a locally convex, metrizable, complete space
(E, 77) is a basis relative to .7~ providing it is a basis relative to
the w(E, E*) topology for E. As a corollary to Theorem 1 we obtain
the following weak basis theorem which applies to a class of linear
topological spaces which includes certain nonmetrizable spaces.

COROLLARY 2. If (E,.77) 1s a locally convex Hausdorff space
which 1is sequentially complete in tts w(E, E*) topology, then a
sequence {x;} in E is an unconditional basis for (K, 77) provided it
1s an unconditional basis for E with its w(E, E*) topology. Thus, a
w(E, E*) unconditional basis 1n a semireflexive space (H, 7), e.g.,
a Montel space, ts an unconditional basis relative to 7.

Proof. Suppose {x;} is a w(F, E*) unconditional basis. For xe E
let {a;} denote the unique sequence of scalars such that for all fe E*
fix) = X2, a,f(x;) where the convergence of the series is unconditional.
Unconditional convergence of a series of real or complex numbers
implies subseries convergence for that series. It follows, using the
hypothesis of w(H, E*) sequential completeness, that 32, a,x; is weak
subseries convergent so by Theorem 1, & = lim, 3* , a;x;, convergence
relative to 7. If x also has the expansion x = lim, > ", b;x;, uncon-
ditional convergence relative to .7, then f(x) = >.2.b,f(x;), feE*
where the convergence is unconditional in the scalar field so b, = a,,
1€ w, because of the assumed uniqueness of {a,}.
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