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AN INEQUALITY FOR GENERALIZED MEANS

H. W. MCLAUGHLIN AND F. T. METCALF

This paper is concerned with the behavior of certain
combinations of generalized means of positive real numbers,
considered as functions of the index set. It is shown that
these combinations are actually superadditive functions (over
set unions) of the index set. Several previously established
inequalities of this nature are obtained as corollaries of the
main theorem, namely, certain results of R. Rado, W. N.
Everitt, D. S. Mitrinoviέ and P. M. Vasic, and H. Kestleman.

Let {a,i}i=1 be a sequence of positive real numbers. A result of

W. N. Everitt [2] (which generalizes an earlier result of R. Rado [8];

see also Tchakaloff [9], Jacobsthal [5], and Dinghas [1]) states that

for any 1 <; m < n, one has

γi i=i \i=i J J

[ 1 m / m \l/m-|

— Σ^-ίΠαΛ

[ 1 n f n \l/(Λ-mΠ

— Σ at - Π aή
That is, n times the difference between the arithmetic mean and the
geometric mean, considered as a function of the set

{1,2, . . . , n } = {1, . . . ,m}(J{m + 1, . . ,rc} ,

is "superadditive" over this set union. In [2] Everitt generalizes this
result further by considering differences of more general means.

In a recent paper, [7] Mitrinovic and Vasic established an ine-
quality which may be interpreted in this same "superadditive" sense.
They considered a ratio of means and restricted their attention to
the union.

{1,2, . . . , W } = {1, . . . , r c - l } U M .

The intention of the present authors is to establish here, by means
of a simple argument, an inequality which generalizes and unifies the
results of Everitt and Mitrinovic and Vasic, and which yields readily
the conditions for equality in the result of Mitrinovic and Vasic.

Let {aly α2, •••} and {p19 p2, •••} be infinite sequences of positive
numbers. Suppose J is a nonempty finite set of distinct positive
integers. Then the mean of order r(—oo < r < +oo) of the numbers

303



304 H. w. MCLAUGHLIN A N D F . T. M E T C A L F

{«i}is/> w i t h weights {Pi}iei, is defined as follows:

/ΣPiαίV" -oo < r < +<

Mr(a; p,I) = -

(ΠαfO'^ , r = 0.
Vie/ /

It is known (see, e.g., Hardy, Littlewood, and Pόlya [4; p. 15]) that
this definition yields a continuous function o f r i n — oo < r < + c«.
For an illustration of this notation consider again the inequality (1).
If I = {1, , m}, J = {m + 1, , n}, and p{ = l/n(i = 1, , w), then
(1) may be rewritten, using the above notation, as follows:

( Σ , v)[MAa; p, I U J) - M0(a; p, I U J)]

^ ( Σ p)[M1(a; p, I) - M0(a; p, I)]

+ ( Σ p)[M1(a; p, J) - M0(a; p, J)] ,
V J J

where sums of the form Σίe/ Pi have been shortened to 2 / P

2* The main inequality. The general inequality referred to
in the previous section will now be established.

THEOREM. Let I and J be nonempty disjoint finite sets of
distinct positive integers, and let {αJ^€ZUJ, {Pi}ί€ZUJ, and {gJi€ZUJ be
sets of positive real numbers. Suppose 0 < λ, μ and λ + μ ;> 1.
Then, for any finite real numbers r and s, one has

ΣΛP)(ΣI qΪM}r{a; p, I U J)Ms

μs(a; q, I U J)
I\JJ J \I\JJ J

^ (Σ P ) ' ( Σ qfMr»(a; p, I)M!'(a; q, I)

J
+ fΣ pYfΣ q)μM*r(a; p, J)Λf." (α; ?, J) .

// λ + JM > 1, ίλen equality never holds; while, if X + μ = 1, then
equality holds if and only if the ordered pairs

( ( Σ q)M:(a; q, I), ( Σ q)M!(a\ q, J))

and

( ( Σ p)M;(α; 2), J), ( Σ P)M;(<I; p, J))
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are proportional.

Proof. Jensen's inequality (see Hardy, Littlewood, and Pόlya [4;
p. 29]) asserts that, if Al9 A2, Bu and B% are positive real numbers,
then

(2 ) (A1 + Ag)
λ{B1 + B2γ }> AiBξ + A}BS .

If λ + μ > 1, then equality never holds; while, if λ + μ = 1, then
equality holds if and only if the ordered pairs (Alf A2) and (Blf B2)
are proportional. The inequality of the theorem follows immediately
from (2) upon choosing

A = ( Σ P)M;(<L; p, I), A2 = ( Σ v)Mϊ{a) p, J) ,

B1 = ( Σ q)M;(a; q, I), 5 2 - ( Σ Q)Ms

s(a; q, J) ,

and noting that, for instance,

Σ P )M;(a; p, I U J)
IΌJ

= ( Σ p)Mr

r(a; p, I) + ( Σ p)Mr

r(a; p, J) = Λ + At .

REMARK 1. If λ and μ are such that

Xμ < 0 and λ + μ = 1 ,

then the sense of the inequality of the above theorem is reversed,
while the necessary and sufficient condition for equality remains
unchanged. This is a consequence of the fact that the sense of
inequality (2) is reversed under these assumptions on λ and μ, while
the necessary and sufficient condition for equality in (2) remains
unchanged (see Hardy, Littlewood, and Pόlya [4; p. 24]).

3* Special cases. In the corollaries which follow, as in the
theorem above, / and / denote nonempty disjoint finite sets of distinct
positive integers, and K } ί € / U J , {pj^uj, and {gj^/uj are sets of positive
real numbers.

The following corollary may be interpreted as a direct generali-
zation of the inequality of Mitrinovic and Vasic [7; Th. 3], which is
itself given as Corollary 2.

COROLLARY 1. For any finite real numbers r and s, such that
rs < 0, one has
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s/(s~r)

iϋJ

;q,I\Jj)
H J

I\JJ

ikfs(α;g, J ) J

Equality holds if and only if the ordered pairs

Σ q)M:(a; q, I), ( Σ q)M;(a; q, J)
I J \ J

and

/ / \ /
T7(Π Ύ\ T\ I \ "* sy\ I Ά/Trί/Ίm /K) 7^

are proportional. If rs > 0 cmd r ^ s, ίAβ^ ίfeβ sense of this
inequality reverses, while the necessary and sufficient condition for
equality remains unchanged.

Proof. When rs < 0, one has

and _ = £ - - — * — > 0 .
s — r i r s — r

Choosing

λ = — - — and μ =
s — r s — r

in the theorem gives the desired result. Also, if rs > 0 and r Φ S}

then the reversal of the sense of this inequality follows from Remark
1, upon choosing λ and μ as above.

Taking I = {1, , n — 1} and J — {n} in Corollary 1 gives the
following inequality of Mitrinovic and Vasic [7; Th. 3], together with
the necessary and sufficient condition for equality to hold.

COROLLARY 2. For any finite real numbers r and s, such that
rs < 0, one has
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sl(s-r)

1

Mr(a;p,Hj

n— 1 \sl(s—r)

where I = {1, , w — 1} cmd J = {̂ }. Equality holds if and only if

M'Λa; q, I)
a

pn

 n ΐ£p Mr

r(a; p,

If rs > 0 and r Φ s, ίfeβ^ ίfeβ setise o/ ί/m inequality reverses, while
the necessary and sufficient condition for equality remains unchanged.

The next corollary is a consequence of Corollary 1 and the
arithmetic mean-geometric mean inequality. As special cases of this
corollary, there will follow inequalities of Mitrinovic and Vasic [7;
Th. 1] and Kestleman [6].

COROLLARY 3. For any finite real numbers r and s, such that
rs < 0, one has

χI\JJ

Σ P

I\JJ

<

Ms{a;q,I)

a;P,J)Ύr
a; q, J) J\ΣQ/ LMs(a;q,J)

Proof. The right-hand side (lower bound) of the inequality of
Corollary 1, when divided by Σ/UJP>

 m a y be rewritten as

Σ ? / lMs{a;q,I)

Σ
Σ J Λ Σ Ϊ / LMs(α;g,J)J
IΌJ J

ι;p,J)Ύ°n-r)
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This quant i ty, when viewed as an ar i thmet ic mean of two positive
numbers, wi th weights Σ / 2 > / Σ / U J P

 a n d Σ J P / Σ J U J P »
 m a y be bounded

below by t h e geometric mean of the two positive numbers, namely,

Mr(a;p, J)Ί^ns-r)]j

Ms(a; q, J)

. . Σ , / . Σ .

Thus, this quant i ty is bounded above by the left-hand side (upper
bound) of t h e inequality of Corollary 1, divided by Σ 7 U J p . Raising
both of these quanti t ies to the ((s — r)/r) < 0 power reverses the i r
order relation and yields t h e desired inequality.

R E M A R K 2. In Corollary 3, upon choosing s = 1, I = {1, ,n — 1},
J = {n}, and le t t ing r—>0 —, one obtains t h e inequality of Mitrinovic
and Vasic [7; Th. 1], This resul t in t u r n implies an inequality of
Kestleman [6], as is mentioned in [7] .

R E M A R K 3. In the last remark i t was shown how Theorem 1 of
[7] follows as a consequence of Corollary 3. However, this result,
toge ther wi th t h e necessary and sufficient condition for equality, may
be obtained more directly by a simple application of t h e ar i thmet ic
mean-geometric mean inequality, as follows. Since

M0(a; p , I U J ) = [MQ(a; p, I)ψUhv [M,(a; py JWIih*

and

/ΣP\/ΣΪ> Σ Ϊ \
,(a\ q,IUJ)= U - te_ ^ - )M1(a; q, I)

\ΣP/\ΣP Σ?/
X/UJr ' I I\JJ '

where equality holds in t h e last inequality if and only if
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(3)
Σ<7 Σί
-J^-Mx{a; q, I) = -^—M^a; q, J) ,

one has, upon division, that

. ( ; p , I U J)
Mx(a; q, I \J J)

Σ i
JUJ

ΣP
J

with equality if and only if (3) holds. This last inequality is that of
Theorem 1 of [7] referred to in Remark 2. It is to be noted that
the equality condition follows readily from the method of proof.

It will next be shown how an extension of the result of Everitt
[2, Th. 1] follows from the inequality of the theorem of §2.

COROLLARY 4. Let s be a real number. If 1 < s, then

3:P)M.(a;p,IUJ) ^ Σ V)M.(a; p, I)
IUJ '

+ ( Σ P)Ms(a; p, J) ,

with equality if and only if

Ms(a; p, I) = Ms(a; p, J) .

// s — 1, then equality always holds. If s< 1, then the sense of the
inequality is reversed, while the necessary and sufficient condition
for equality remains unchanged.

Proof. Suppose first that 1 < s. Set qi — Vi for i e I U J, r = 0,
λ = 1 — 1/s, and μ = 1/s in the theorem to obtain Corollary 4 when

1<8.

If s = 1, then the result is immediate, since the left-hand and
right-hand sides of the inequality are always equal.

If s < 1 and s Φ 0, then Remark 1, with qi — pi for i e I (J J,
r = 0, λ = 1 — 1/s, and μ = 1/s, gives the desired result (upon noting
that, in this case, one has Xμ < 0 and λ + μ = 1).

Finally, the inequality corresponding to s = 0 follows upon letting
s tend to zero in the inequality already established for s < 1 and s Φ 0.
The necessary and sufficient condition for equality does not appear
to follow from the corresponding condition for s < 1 and s Φ 0, upon
letting s tend to zero. However, its validity is a consequence of the
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necessary and sufficient condition for equal i ty in t h e a r i t h m e t i c mean-
geometric mean inequality, since

M0(a; p,IUJ) = [M0(a; p, IWhh*- [M0(a; p, JWIΉJ* .

REMARK 4. The above Corollary 4 shows that Everitt's result
(which is the case s ^ 0) also holds when the order of the mean is
negative.

Letting ai9 b{ > 0, i e 2, and 1/λ + 1/μ = 1, λ > 1, Holder's in-
equality asserts that

( ( ή - Σ α& ̂  0 .

In fact, Everitt [3] has shown that if I Π J = 0 , then

H(a, b; I U J) ^ H(a, b, I) + H(a, 6, J) .

That this last inequality follows from Corollary 1 is proved in the
next corollary.

COROLLARY 5. Let aif 6< > 0, i e I U J, I Π J = 0 .

Σ
I\JJ

Equality holds if and only if the ordered pairs

(Σδ^,Σδ^) and

are proportional.

Proof. Since Σ/UJ α& = Σ / α ^ + Σ J α^> it suffices to show that

0&βl) fe6') a (? α ") (?6*) + (?" ' ) (?")
This inequality follows immediately from the inequality of Corollary 1
by choosing r = λ, s = —μ1pi = l9 and q{ = (α^)- ' for ieliJJ. The
necessary and sufficient condition for equality is a consequence of
that in Corollary 1.
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