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Let K be the closure of one of the complementary domains
of a 2-sphere S topologically embedded in the 3-sphere, S:&.
We give first (Theorem 1) a characterization of those points
pe S with the following property: there exists a homeomor-
phism %: K — S® such that i(S) can be pierced with a tame
arc at i(p). The topological property of K which distinguishes
such a “piercing point” p is this: K — p is 1-ULC. Using this
result, we find (Theorems 2 and 3) that p is a piercing point
of K if and only if S is arcwise accessible at p by a tame
arc from S® — K (note: perhaps S cannot be pierced with a
tame arc at p, even if p is a piercing point of K). Thus,
the “tamely arcwise accessible” property is independent of the
embedding of K in S3. The corollary to Theorem 2 gives an
alternate proof of an as yet unpublished fact, first proven by
R. H. Bing: a topological 2-sphere in S* is arcwise accessible
at each point by a tame arc from at least one of its comple-
mentary domains,

In the last section of the paper, we give two applications
of the above theorems, First, we show in Theorem 4 that S
can be pierced with a tame arc at p if and only if p is a
piercing point of both K and the closure of S® — K. Finally,
we remark in Theorem 5 that S can be pierced with a tame
arc at each of its points if it is “free” in the sense that for
each ¢ > 0, S can be mapped into each of its complementary
domains by a mapping which moves each point less than .
It is not known whether each 2-sphere S with this last pro-
perty is tame.

A space homeomorphic to such a set K in S® (as described at the
beginning of the Introduction) is called a crumpled cube. We write
Bd K=S and Int K=K —Bd K. An arc A in S* is said to pierce
a 2-sphere S in S® if AN S is an interior point p of 4 and the two
components of A — p lie in different components of S* — S. The
piercing points of a crumpled cube are defined as above and were
first considered by Martin [10]. It follows from Lemmas 2 and 3 of
[10] and [6; Th. 11] that the nonpiercing points of a crumpled cube
K form a O-dimensional F, subset of Bd K.

If C and D are subsets of a space Y with metric d, and ¢ > 0,
we use B(C, D;¢) to denote the set of all points 2 €D such that for
some yeC,d(x,y) <e. The metric on E® and S° is always assumed
to be the ordinary Euclidean one. Let A*(n = 1) denote a closed #-
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simplex, If Y is a metric space and 4 C Y, we say that A is »-LC
(n=0) at peClA c Y(Cl A = the closure of 4) if for each ¢ >0
there is a ¢ > 0 such that each mapping of Bd 4" into B(p, 4; 0)
extends to a mapping of 4"*' into B(p, A;¢). We say that A is =n-
ULC (n = 0) if for each & > 0 there is a 6 > 0 such that each mapp-
ing of Bd 4" into a subset of A of diameter less than ¢ extends to
a mapping of 4"*' into a subset of A of diameter less than ¢, We
refer to a mapping f:Bd 4*— Y as a loop.

By a null sequence of subsets of a metric space, we mean one
such that the diameters of its elements converge to zero. A Sierp-
inski curve X is (uniquely) defined as any space homeomorphic to
[Bd £#2] — U Int D;, where D,, D,, ---, is a null sequence of disjoint
2-cells whose union is a dense subset of Bd 42, The tnaccessible part
of X corresponds to [Bd £#] — U D;. For a more detailed discussion
of Sierpinski curves, see [3].

2. Preliminary lemmas. The following is Theorem 1 of [12],
stated here for the reader’s convenience,

LEMMA 1. Let C be a q-cell (¢ =1,2, or 3) topologically em-
bedded in E®, and let D < Bd C be a (¢ — 1)-cell. Let A, A,, +-+, A,
be a finite disjoint collection of tame arcs in KE® — D with each Bd
A, Cc E* — C. Then, there exists a compact set E C C — D such that,
for each € >0, there is a homeomorphism h : E* — E* with each h(A;) C
E? — C and h is the identity outside the e-neighborhood of E.

We shall also need the following [5; Th. 2].

LEMMA 2. Let B be a closed subset of 4% let A be a subset of
the separable metric space Y and suppose that A 1s O-LC and 1-LC
at each point of Y. Lete > 0 and a mapping f: 45— Cl A be given.
Then, There is a mapping f*:4°—Cl A such that

f¥4* = B)C A, f*|B=f|B, and d(f*(z), f(x)) <e
for each xe 4%, where d is the metric for Y.
Let X be a topological space, and Y a closed subset of X. A
loop f:Bd 4*— X will be said to be contractible in X (mod Y) if
there exists a connected open set N in 4* such that Bd 42 c N, and

a mapping F:CIN— X such that F|Bd4*=f, and F maps the
(point-set) boundary of N (in 4%) into Y.

LEmMMA 3. Let K be a crumpled cube in S%, and let U be an



SOME TOPOLOGICAL PROPERTIES OF PIERCING POINTS 315

open subset of K such that U N Bd K is an open 2-cell T. Let A be
a compact subset of K such that A N Bd K consists of a single point
pin T, where K* — p is 1-LC at p and K* 1is the crumpled cube
S* — Int K. Then, if a loop in U — A s contractible in U — A
(mod T — p), it is contractible to a point in (U — A) U (W — A),
where W 1is any open set im S® containing p.

Proof. Let N be a connected open set in 4* containing Bd 4,
let W be an open set in S*® containing p, and let

F:CIN—-U-A

be a mapping which takes the boundary B of N in 4* into T — p.
By the homotopy extension theorem, F'| B: B— T extends to a mapp-
ing G: 42— T. Hence, by Lemma 2, and the fact that K* — p is
1-LC at p, F'| B extends to

G*: £ —[T—-plU[(WNK*) — p].

Finally, define H: £##— (U — A)U(W — A) by H|CIN = F |CIN
and H|4# — N=G*| £ — N. Then H is the required contraction of
F|Bd 4.

REMARK. Given the notation of the lemma, and a loop f:Bd 4*
— U — A, a necessary condition for f to be contractible to a point
in (U—- A) U (W — A), where W is a small neighborhood of p in S?,
is that f be contractible in U — A (mod T — p).

3. Characterizations of piercing points.

THEOREM 1. Let K be a crumpled cube and p a point of Bd K.
Then p s a piercing point of K if and only if K — p is 1-LC at
P.

Proof. We may assume, by [8] and [9], that K is embedded in
S® in such a manner that there exists a homeomorphism % of C, the
closure of S® — K, onto the closed unit ball in E® Let A be the
inverse image under % of the straight line segment in E? from the
origin to h(p). Then A is an arc which is locally tame in S® except
possibly at p, and according to Martin [10], » is a piercing point of
K if and only if A is tame. By [11, Lemma 5], A is tame if and
only if S* — A is 1-LC at p. Hence the problem is reduced to show-
ing that S®* — A4 is 1-LC at p if and only if K — p is 1-LC at p.

We shall give the details of the “if” part of the above assertion.
The converse is merely a rearrangement of the same ideas. Suppose
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K—p is 1-LC at p, and let ¢ be a positive number. We must
find a 6 >0 such that each loop in B(p, S® — 4;0d) is contracti-
ble in B(p, S* — A;¢). We assume that ¢ is less than the distance
from p to ~7((0, 0, 0)). Since K — p is 1-LC at p, there exists o > 0
such that each loop in B(p, K — p; p) is contractible in B(p, K — p; €).
Let U be an open subset of S*® such that pe U B(p, S% p) and such
that there is a homeomorphism of U N C onto the set of points in E?
having nonnegative z-coordinates which takes U N A into the z-axis.
Finally, choose § > 0 so that B(p, S* d)c U.

Now, a given loop in B(p, S® — A; d) is homotopic in U — A to a
loop in

(UNK)—-»pCB(p, K — p;0),

and this loop in turn is contractible to a point in B(p, K — p;¢), as
required.

REMARK. Since K is compact and locally contractible, the condi-
tion “K — p is 1-LC at p” is equivalent to “K — p is 1-ULC”.

COROLLARY. Let K be a crumpled cube, and p a point of S =
Bd K. Then p is a piercing point of K if and only tf the follow-
ing condition holds: For each € > 0, there is a 6 > 0 such that each
stmple closed curve in B(p, S — p; 0) is contractible in B(p, K — p; €).

Proof. The condition is necessary by the preceding theorem. To
show sufficiency, assume the notation of the preceding proof and let
€ >0 be given as before. Let 6 > 0 be chosen to satisfy the above
condition and so that only the component of 4 — B(p, S% 6) which
contains 27Y(0, 0, 0)) fails to lie in B(p, S% ¢). We also assume that
A is locally polyhedral at each point of A — p. Then, each piecewise-
linear homeomorphism

f:Bd £ — B(p, S* — A; )

extends to a piecewise-linear mapping F of 4% into B(p, S* — p; ) such
that F' is in general position relative to A. Hence F~'(A4) is finite.
If xe F-'(A), then F restricted to a sufficiently small curve enclosing
x represents a loop in B(p, S* — A; ) which is homotopic in B(p, S® —
A;¢) to a loop in B(p, S — p; 0), and hence is contractible in B(p, K —
p; €). This permits us to redefine F' in a small neighborhood of each
x € F'(A), and thus obtain an extension of f mapping 4* into B(p, S*® —
A;¢). Hence S* — A is 1-L.C at p and the result follows.

LEMMA 4. Let K be a crumpled cube in S, and p a piercing
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point of the crumpled cube K* = S* — Int K. Suppose A is an arc
in K having p as an end-point, such that AN S = p, where S = Bd
K. If there exists a homeomorphism h:K— 8 such that h(A) ts
tame, them A 1is tame.

Proof. Since h(A) is tame, A is locally tame in S* except possibly
at p. Hence, by [11; Lemma 5], it suffices to show that S®— A4 is
1-LLC at p. Suppose ¢ > 0. Let U be an open set in S*® such that
peUc B(p, S%¢)and UN S is an open 2-cell T. Since & is a homeo-
morphism, and since S® — h(A) is 1-LC at h(p), there exists 0 >0
such that each loop in B(p, K — A; p) is contractible in (UN K) — A
(mod T' — p). Choose p > 0 so that each loop in B(p, K*; pt) is con-
tractible in B(p, K*; o). Finally, let 6 > 0 be such that each pair of
points in B(p, S; 0) can be joined by an arc in B(p, S; p).

Now let a loop in B(p, S* — A; 0) be given. We give here an out-
line of the proof that this loop is contractible in B(p, S* — A4;c¢).
The details are left to the reader. There are three steps:

1. After performing a small homotopy in B(p, S® — A;0), we
assume that this loop is a simple closed curve J such that Jn K*
consists of a finite number of disjoint ares L,, L,, ---, L,, with L; N
S = Bd L,, for each 7.

2. For each 7, let Z; be an arc in B(p, S; ¢t) — p joining the end-
points of L;. Then L; is homotopic in B(p, K*; o), with end-points
fixed, to Z;. Since K* — p is 1-LC at p, Lemma 2 allows us to adjust
this homotopy to give one in B(p, K*; p) — p between L, and Z,.
Hence, by piecing together these homotopies, we see that the given
loop is homotopic in B(p, S* — A; p) to the loop

[J—UIntL;lU U Z:

in B(p, K — A; p).

3. This last loop is contractible in (UN K) — A (mod T — p).
Hence, by Lemma 3, it is contractible to a point in B(p, S® — A4;e¢).
This completes the proof.

REMARK. Using the same techniques, and Lemma 3, we could
prove this lemma with “tame” replaced consistently by “cellular” or
“has a simply-connected complement in S*’ everywhere in its state-
ment. In these two alternate formulations, we could permit A to be
any compact absolute retract, and p any point of A.

THEOREM 2. Let K be a crumpled cube in S®, and p a point of
S=BdK. If p is a piercing point of K, then there is a tame arc
Ain K* = S* — Int K having p as an end-point such that AN S = p.
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Proof. By Lemma 4, it suffices to show that there is an arc A
in K* having p as an end-point such that A NS = p, and such that
for some embedding % : K* — S% h(A) is tame. We choose % so that
the closure of S* — A(K*) is a 3-cell ([8] and [9]). Hence, the theorem
will follow as stated above if we can prove it in the special case
when K is a closed 3-cell. We make this assumption to simplify the
notation.

Let f be a homeomorphism of the closed unit ball B in E® onto
K, with £((0,0,1)) = p. Let T;(i=1,2,.--) be the 2-cell which is
the f-image of the intersection of B with the plane z =1 — 1/¢. Let
the 3-cell C,(+ =1,2, --.) be defined inductively as follows: C, is
the closure of the component of K — T, not containing p; C; (1 = 2)
is the closure of the component of

K-T,-UC¢C;
1<%
not containing p. Finally, let A* be a tame arc in S* having p as
one end-point and the other end-point not in K. We assume that
A*NC, = o

According to Lemma 1, there is for each ¢ > 1, a homeomorphism
g; : S*— S* which is the identity outside a small neighborhood U; of
T, and which is such that g¢,(4*)N T; = ¢. In particular, the U/s
may be chosen to form a null sequence of disjoint sets. Let g be
the homeomorphism of S® onto itself which agrees with ¢, on U;, for
each 7, and otherwise is the identity. Then ¢g(4*)N T; = ¢, for each
i, and g(p) = p. ,

Again using Lemma 1, there is, for each 7 > 1, a compact set
E,cC;, —(T;U T, (by the previous paragraph, there is a 2-cell in
Bd C; containing T, U T;_, and missing ¢(A4*)) and a homeomorphism
k;:S*— S* which is the identity outside an arbitrarily small neigh-
borhood V,; of E; and which is such that k;9(A*) N C; = ¢, for each
7. We choose V; so close to K, that the Vs form a null sequence
of disjoint sets, and so that V, misses the closure of K — C,. Let
k be the homeomorphism of S? onto itself which agrees with k; on
V., for each 1, and reduces to the identity otherwise. Then A = kg(A*)
is the required arec.

COROLLARY (Bing). A topological 2-sphere im S® is arcwise ac-
cessible at each point by a tame arc from at least one of its com-
plementary domains.

Proof. Let K and K* be the two crumpled cubes into which
the 2-sphere S decomposes S:. If pe S, then either » is a piercing
point of K, or p is a piercing point of K*([10; Theorem]). The result
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then follows from the preceding theorem.

THEOREM 3. Let K be a crumpled cube in 8%, and p a point of
S = Bd K. If there is a tame arc A in K* = 8 — Int K having p
as an end-point and such that AN S = p, then p is a piercing point
of K.

Proof. 1t suffices to establish the condition given in the corollary
to Theorem 1. Thus, take ¢ > 0. We assume that ¢ is less than the
distance between p and ¢, where ¢ is the other end-point of A.
Choose 6 > 0 so that B(p, S;06) lies interior to a closed 2-cell DcC
B(p, S; ¢).

Since A is locally tame at p, there is a tame 2-gphere

Z* < B(p, S% 9d)

which separates p from ¢ in S® and which meets A at precisely one
point » ¢ Int A, at which A pierces Z*. Let T be a small closed 2-
cell in Z* missing K and such that »eInt 7. Note that, by linking
considerations, Bd 7' is not contractible in B(p, K*;¢) — A.

Appealing to [2; Th. 1} and [4; Th. 1}, we obtain, for each
o >0, a tame Sierpinski curve X c S such that each component U;
(¢t =1,2, ---) of S — X has diameter less than p, and a homeomorphism
h:8S*— S* which moves each point of S®less than o, which is the
identity outside B(Z* N S, S% p), and which is such that A(Z*)N X
consists of a finite disjoint collection of simple closed curves each
in the inaccessible part of X. Let Z = h(Z*). By choosing o suffi-
ciently small, we may ensure that » is the identity on T and that
Z retains all the properties originally required of Z*. A final require-
ment on o is that p <& — o and that the component of S — X con-
taining p should not meet Z (if pe X, then S can be pierced with a
tame arc at p, by [6; Th. 6]).

We assert that there is at least one component of Z N S separat-
ing p from Bd D in D (this component is necessarily a simple closed
curve). If not, then ZN X consists of a finite number of simple
closed curves each of which is contractible in D — p, and Z N (S — X)
can be covered by the null sequence of disjoint open 2-cells of dia-
meter less than p in S:U, U, ---. Note that U;N Z is compact.
It is now easy, using the homotopy extension theorem on each of the
inclusions U; N Z— U,; as in the proof of Lemma 3, to construct a
mapping contracting Bd T in

[K*N(Z—Int T)]U[B(p, S — p;e)] < B(p, K*;¢) — A,

a contradiction.
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By the preceding paragraph, we may let L. be an innermost (in
Z — T) one of the components of SN Z which separates p from Bd
D in D. Let L bound the 2-cell FFc Z — T. Note that L is not
contractible in B(p, K*;¢) — A and that no component of SN Int F
separates p from Bd D in D. Hence, by the argument of the preced-

ing paragraph, the “large” component of F'— S lies in Int K, and L
is contractible in

[KNFlU[B(p, S — p;¢)] < B(p, K — p;e) .

Since each simple closed curve in B(p, S — p;0) is homotopic in D — p
to L, the proof is complete.

4, Some applications,

THEOREM 4. Let S be a 2-sphere topologically embedded in S?,
and let K and K* be the two crumpled cubes into which S divides
S3. Then S can be pierced with a tame arc at a point pc S if and
only if p is a piercing point of K and a piercing point of K*.

Proof. The “only if” part of the theorem follows from Theorem
3. For the converse, suppose that p is a piercing point of each of
K and K*, and let A be an arc in S such that A is locally tame
except possibly at the end-point p. By [6; Th. 6], S can be pierced
with a tame arc at p if A is tame.

To show that A is tame, we proceed in essentially the same man-
ner as in the proof of [6; Lemma 6.1]. That is, let S’ be a 2-sphere
in S* which contains A and is locally tame at each point of ' — A4,
and which is homeomorphically so close to S that p is a piercing
point of each of the crumpled cubes L and L* into which §' divides
S? (use Theorems 2 and 3). It suffices to show that S’ is tame.

Exactly as in [6], S’ is locally tame at each point of A — p.
Hence, S’ is locally tame except possibly at p. It follows easily,
since L — p and L* — p are each 1-LC at p, that S* — S’ is 1-LC at
each point of S’ and hence that S’ is tame by [1; Th. 6]. This com-
pletes the proof.

In [7], Hempel studied the properties of a surface S (=Bd K)
which is free relative to one of its complementary domains (Int K)
in S§* (i.e., S satisfies the mapping condition stated in the following

theorem). It is not known whether the crumpled cube of this theorem
is necessarily a 3-cell.

THEOREM 5. Let K be a crumpled cube, and let S = Bd K. Sup-
pose that for each & > 0 there exists a mapping f:S— Int K which
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moves each point of S less than . Then each point of S is a pierc-
ing point of K.

Proof. We shall verify the condition given in the corollary to

Theorem 1. Suppose pc S and ¢ > 0. Choose é > 0 so that there is
a closed 2-cell D S such that

B(p, S;0) c D < B(p, S;¢) .

Then, if J is a simple closed curve in B(p, S — p; 6) bounding a 2-
cell D* c D, there is a p > 0 such that o is less than the distance
from D to the complement of B(p, K;¢) and such that each mapping
of J into K which moves each point of J less than p is homotopic
in B(p, K — p; 0) to the inclusion of J into B(p, K — p; d).

Suppose f:S— Int K is a mapping which moves each point of S

less than p. Then J is homotopic in B(p, K — p; 6) to f(J), and f(J)
bounds the singular 2-cell

A(D*) < B(p, K; ) — S.
This completes the proof.

REMARK. If S < S®is a topological 2-sphere which is free rela-
tive to each of its complementary domains, then it follows from the

foregoing theorems that S can be pierced with a tame arc at each of
its points.
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