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Let A be a normed algebra and B(A) the algebra of all
bounded linear operators from A into itself, with operator
norm. An element T<c B(A) is called a multiplier of A if
(Tx)y = o(Ty) for all z,yc A. The set of all multipliers of
A is denoted by M(A). In the present paper, it is first shown
that 1M (A) is a maximal commutative subalgebra of B(4) if
and only if A is commutative. Next, M(A) in case A is an
H *-algebra will be represented as the algebra of all com-
plexvalued functions on certain discrete space. Finally, as
an application of the representation theorem of M(A), the
set of all compact multipliers of compact H *-algebras is
characterized.

In case A is commutative, the general notion of multipliers was
first studied by Helgason [7], followed by Wang [12] and Birtel [2],
[3],[4]. In the special case when A = L,(G), the group algebra over
an arbitrary locally compact abelian group, the problem of multipliers
has also been studied by Helson [8] and Edwards [5]. (Cf. also Rudin
[11].) Helgason [7] called a functlon g on the maximal ideal space
7 of A a multiplier if gA = A where A is the Gelfand transform
of A. Later Wang [12] and Birtel |[2] carried out more systematic
studies on multipliers., In case A is semi-simple, Wang [12] proved
that there exists a norm-decreasing isomorphism between M(A) and
C=(_#"), the algebra of bounded continuous functions of _#Z. In
particular if A = L(G), then M(A) = M(G), the algebra of all bounded
regular Borel measures on G. In the noncommutative case, Wendel
[13] first studied multipliers' for noncommutative group algebras,
followed by Kellogg [9] for H*-algebras. However, since Kellogg’s
proofs rely heavily on the representation theorem of Wang [12] for
multipliers on general commutative semi-simple Banach algebras,
revelent results on multipliers of H *-algebras were obtained only for
the commutative case.

2. Multiplier algebras. Let A be a normed algebra. A is
said to without order if either xA = {0} or Ax = {0} implies x = 0.
Clearly, if A is semi-simple or A has a unit, then A is without order.
In the sequal, we assume all normed algebras under consideration are
without order. An element T e B(A) is called a right (left) multiplier

1 Both Kellogg [9] and Wendel [13] used the terminology “centralizers” instead
of “multipliers”.
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of A if T(xy) = (Tx)y(T(xy) = x(Ty)). We denote the set of all right
(left) multipliers of A by R(A)(L(A)). We first observe the following:

ProrosiTioON 1. R(A) N L(A) = M(A).

Proof. Clearly, we have R(A)N L(A) & M(A). Let Te M(A).
Note that (T(xy))z = (2y)Tz = 2(y(T?)) = 2((Ty)2) for all x,y,zc A.
Since A is without order, T(xy) = x(Ty), i.e. Te R(A). Similarly,
one easily shows that Te L(A), completing the proof.

A commutative subalgebra Y of an algebra X is called maximal
commutative subalgebra of X if Y is not properly contained in any
proper commutative subalgebra of X. If X has an identity element
¢, ¢ belongs to any maximal commutative subalgebra of X. Using an
argument based upon Zorn’s lemma, one easily shows that M(A) is

contained in some maximal commutative subalgebra of B(A), say
MC(A).

For an arbitrary normed algebra X, we denote its centre by
Z(X). One can easily verify the following inclusions:

Z(B(A)) & Z(M(4)) & M(A) & MC(A) = B(4) .

Kellogg [9] proved that M(A) is a closed commutative subalgebra of
B(A), consequently we always have M(A) = Z(M(A)). More precisely,
we can prove the following:

ProPoOSITION 2. Let A be a normed algebra. Then the algebra
M(A) of all multipliers of A is a closed commutative sub-algebra of
B(A), the algebra of all bounded linear operators in A with operator
norm.

Proof. Let T,eM(A) and ||T,— T||—0, for n=1,2,3, .-,
We note that for any z,yc A,

|2(Ty) — (Txyy || < (| 2(Ty) — 2(T.) || + [[(Tux)y — (Tx)y ||
s2(z|llyl|T.— TI.

Letting = tend to infinity, we have x(Ty) = (Tx)y. Thus T e M(A),

and M(A) is closed. These remarks together with the result of
Kellogg complete the proof of the assertion.

From Proposition 2, we may easily deduce that all subalgebras
of B(A) occurring (x) are closed in B(A).

ProPOSITION 3. Let .%,(x) denote the spectrum of an element
zeA. Then %y, (T) = Suw(T).
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Proof. Since both B(A) and M(A) contain the identity, we need
only to prove that for 7e M(A) if T exists and is in B(A), then
T-'e M(A). For any z,yc A, we observe that

(T72)y = (T7o)(TT'y) = (TT )T 7'y) = o(T7y) ,

THEOREM 1. M(A) is maximal commutative subalgebra of B(A)
of and only 1f A is commutative.

Proof. Let A be commutative, and for each x ¢ A, we write T,,
. I the left and right regular representations of x in B(A). Since A
is commutative, [A] = {T,:xc A} = {,T:x e A} & M(A). Suppose A is
not maximal, and let MC(A) be some maximal commutative subalgebra
containing A. Since 4 is not maximal, we may pick 7€ MC(A)\M(A).
On the other hand, T e MC(A) implies that T commutes with all ele-
ments of [A], i.e., for all z,ye A (T2)y = (TT,)y = (T, T)y = x(Ty),
proving that Te M(A). This contradiction establishes that A is
maximal. Conversely let M(4) be a maximal commutative algebra.
Thus Te B(A), and ST = TS for all Se M(A) imply Te M(A4). In
particular, (T,S)y = «(Sy) = (Sx)y = (ST,)y and hence T,c M(A) for
all xe¢A. Thus (xy)z = T.(y2) = y(T.2) = (yx)z for all z,y,zecA.
Since A is without order, xy = yx for all z,yec A, i.e.,, A is com-
mutative.

We will see from §3 and §4 that in case 4 is a simple H*-
algebra, then M(A) = Z(B(4)).

REMARK 1. If A is in addition complete, then M(A) is also a
Banach algebra. In this case, we may define Te M(A) as any map-
ping of A into itself satisfying the condition that (Tx)y = x(Ty) for
all x,yc A. From the fact that A is without order, it is easily seen
that T is linear. As a consequence of closed graph theorem, we may
also show that 7 is bounded (see Wang [12]). The way we choose
to define multipliers is just a matter of convenience. Note that
throughout all of our discusson, we do not assume A to be complete.

3. Lemmata on matrix algebras. Let X be the algebra of
all matrices (v.5), @, Be S, where S is a fixed set of indices and
z.’s are complex numbers satisfying the condition 3%, |%as[* < oo
The multiplication is defined by

2= (2ap) = 2°Y = (ap)(Up)
where

Zap = Z CorYrp o
T€S
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This multiplication is well defined since

Z I‘Zaﬁ lz == Z ’Z LarYrp
a, B a,f 7

= (S el (G uel) < =

We define an inner product on Xg by (%, ¥) = W Das Tas¥ap, Where w
is a fixed constant =1. X, becomes a Banach algebra if the norm is
induced by the inner product in the usual manner, i.e. ||z |* = (=, x).
In this cases, B(X,) can be identified with a subalgebra of all matrices
T = (t.s,5) over S x S such that Tx = y is defined by

Yop = z{;‘ Cuprsys
)

with 3ep | Yas|? < 0. (We refer to Naimark [10] for more detailed
discussion of Xj.)

LEMMA 1. Te M(Xy) if and only if T is a scalar multiple of
the identity operator.

Proof. Let T = (tups) € M(Xy), so (Tw)y = T(xy) for all x,y € X;.
For any fixed pair of indices (s,7)eS x S, let @,, =1, x,; = 0 if
(a, B) # (0,7) and ¥,, =1,y.. = —1, 9,5 = 0 otherwise. Denote z =
(2ag) = (Tx)y = T(xy). Observe from z = (Tx)y that

Z < E tae;a-”crs>(y53) = Z ta’EGTyEﬂ y
3 (1, 8) é

and hence 2., = fuoory RBar = —tarer, 2ap = 0 otherwise. On the other
hand, from z = T(xy) we have

(725) t«m(% x7'5y58> == Z taﬁoéyrﬁ = _'ta/iar .

From these computation, we obtain that ¢,s,. =0 if 80 and B8 = 7.
In case B =0, we have {,,. = —%..,. and so again z,, = 0. Hence
we conclude that ¢,z = 0 unless 8 = 7. Similarly, from x(Ty) =
T(xy) we obtain ¢,5. = 0 unless « = ¢. Since o0, ¢ are arbitrary, we
have ¢,5,. # 0 only if (&, 8) = (0,7). Next we choose #,, = 1,2, =0
if (a,B) # (0,7) and Y, = 1,y = 0 if (a, B) # (¢, v) in the equation
(Tx)y = 2(Ty). It is readily seen from a similar computation that
tasap = tysrs for all a, B,v,0eS. Thus if Te M(X,), then T must be
a scalar multiple of the identity operator.

LEMMA 2. M(X;)=Z(B(Xy)).

Proof. In view of the inclusion relation (x), we need only to
show that if Te Z(B(Xy)), then Te M(X). Let T = (t;;), 1,7 S xS,
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such that for two fixed distinet indices k, A e S X S, ty, = a £~ &, = b
and ¢,; = 0 otherwise. From Lemma 1, we clearly have T ¢ M(A).
Define T,e B(A), T, = (t};), by t}, =1, and ¢;, = 0 otherwise. It
is readily seen by a direct computation that T7T,» T,T, hence
T ¢ Z(B(Xg)), proving the assertion.

4. H*.algebras. An H*-algebra A is a Banach =x-algebra (a
Banach algebra with involution) and a Hilbert space, where the
Banach algebra norm coincides with the Hilbert space norm, with the
the crucial connecting property (xy, z) = (¥, x*y). It is assumed that
for each xc A, ||2*|| = ||x|| and a*xz == 0 if « = 0. A simple example
of an H*-algebra is the matrix algebra X, introduced in §3. In fact,
X, is a simple H *-algebra, and indeed every simple H *-algebra is
isometric and =x-isomorphic to some matrix algebra X,. In general,
Ambrose [1] proved that every H*-algebra is the direct, and at the
same time orthogonal, sum of its closed minimal two-sided ideals
which are simple H*-algebras. (Naimark [10], p. 331).

LEMMA 3. Let A be a normed algebra which is the direct sum
of closed two-sided ideals {I[.:ae '} in A. If Te M(A), then T
maps each I, into itself.

Proof. Let xel, for some fixed a e &. Suppose that (Tx); = 0,
i.e. The projection of Tx into I;, for some B = «a,Bec%. We may
choose y € Iy, y =+ 0, such that (Tx)y = (Tx)sy = 0. (For otherwise, if
(Tx)ﬁIﬁ = 0, then

(Ta)p A = (To)(@ 3} L) = (Te)al: = 0,

contradicting the fact that A is without order.) But on the other
hand, T(xy) = T-0 = 0, violating the multiplier condition. Thus,
(Tx); = 0, i.e. T maps each I, into itself.

Denote by 7T, the restriction of 7T to I,. It is clear that if
Te M(A), then T,e M(I,) for each aez. Hence we may write

TA = T(@ZL):@ TL =@ S T, .
aE¥ 1=ks a€EL
We note that for each T'e M(A), there corresponds a unique set {7}
where T, M(IL,).

THEOREM 2. Let A be an H*-algebra, and {I.: e &} the set of
all minimal closed two-sided ideals in A. Denote by K the topological
space of the set of all minimal closed two-sided ideals in A with the
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discrete topology. Then there exists a x-isomorphism which is at the
same time an isometry of M(A) onto C=(E), the space of all bounded
continuous complex functions on K,

Proof. From the structure theorem of H*-algebras, we know
that A =@ S I, of all its closed minimal ideals which are simple
H*-algebras, s-isomorphic and isometric to some matrix algebras X .
For each T e M(A), let {T,: e &} be the corresponding set of multi-
pliers of I,. By Lemma 1, T, must be a scalar multiple of the
identity operator P,, say T, = t(a)P,, for some complex number #(«)
depending on 7. Define @: M(A) — C(E), the space of all complex-
valued functions on E by &(T)(«) = t(«a) for each ac E. Clearly @
is linear, multiplicative and preserves involution. (i.e., * operations
for elements in A, complex conjugation for elements in C~(EF) and
operator adjoint for elements in M(A).) To show that @ is isometric,
we observe

1751 = || 7(@52) [ = @5 Tos
= 2l Teta | = S [l UQ)z [P = [|(T) [Nl 2|

2

and hence || T = ||9(T)||l. Conversely, we have for some ux, = 0,

o) = 1@ = L2l < < 7
proving ||@(T)|| < || T||. Thus, @ is indeed an isometry, and being
linear, it is one-to-one. On the other hand for each fe C=(F) < C(X),
let T, = f(a)P,. It is readily seen that the mapping 7 determined
by {T,} belongs to M(A) and satisfies &(T) = f. Thus, we conclude
that @ is an isometric x-isomorphism from M(A) onto C=(F).

We note that the present proof differs from its commutative
counterpart [9] in the use of Ambrose’s structure theorem {1] for
H*-algebras instead of Gelfand’s representation for general commuta-
tive Banach Algebras,

REMARK 2. We note that the orthogonal complement of each
minimal closed two-sided ideal is a maximal closed two-sided ideal,
and vice versa. Hence the space of all minimal closed two-sided
ideals is homeomorphic to the space of all maximal closed two-sided
ideals. Thus, in case A is commutative, the above representation
theorem reduces to that of Kellogg’s (Theorem (4.1), [9]).

REMARK 3. From Lemma 2 and the above theorem, it is easily
seen that if A is a H*-algebra then M(A) = Z(B(A)) if and only if
A is simple.
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REMARK 4. The result of Theorem 2 remains valid for any
algebra which is the direct sum of ideals {I,} such that each ideal
is isomorphic and isometric to some matrix algebra. The isometry
of M(A) and C=(E) can be proved without using the orthogonality
of the direct sum in an H *-algebra.

REMARK 5. Since M(A) is a commutative involutory algebra, it
is also contained in the set of all normal operators on A.

REMARK 6. Since M(A) is x-isomorphic and isometric to C=(E),
its maximal ideal space is homeomorphic to the Stone-Céch compacti-
fication of the discrete space E. (See [6], Chapter 6).

REMARK 7. A Banach x-algebra A with identity e is called com-
pletely symmetric if for each xc A, (¢ + ¢*x)'e A. (See Naimark
[10], p. 299.) It is clear that C=(F) and hence M(A) is completely
symmetric. In particular, the Shilov boundary of M(A) coincides
with its maximal ideal space. (Cf. Naimark [10], p. 218.)

Another interesting example of H *-algebras is the group algebra
L,(G), where G is an arbitrary compact group. In this case, all the
minimal closed two-sided ideals of L,(G) are isomorphic and isometric
to finite dimensional simple H *-algebras, or equivalently X, , with S,
finite for each ae & (see [1].). In the following, we will prove a
result for the set of all multipliers which are at the same time
compact operators in case A is a H *-algebra whose minimal closed
two-sided ideals are finite-dimensional. (Such an algebra will be called
compact H*-algebra. Clearly, every commutative H* algebra is a
compact H *-algebra.)

THEOREM 3. Let A be a H*-algebra whose minimal closed two-
sided tdeals are finite dimensional, and MyA) the set of all com-
pact operators im M(A). Then O(My(A)) = C(E), the algebra of all
continuous functions on E which vanish at infinity.

Proof. Since every I, is finite dimensional, each T,e M(I,) is a
scalar multiple of the identity operator P,, and hence compact. For
any finite set F'< E, if we define

T= 3 Ti= > ¢Po,
a€F aEF
where ¢, are complex constants, T is the finite sum of compact
operators and thus again compact. Let Cy(E) be the algebra of all
continuous functions on E with compact support. We have just seen
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that @Y (Cx(F)) € My,(A). Since Ci(E) = C(E), thus ¢ (Cg(K)) =
O Cg(K)). However, My A) is the intersection of the closed sub-
algebra M(A) and the closed ideal of all compact operators in B(A),
and is thus closed. As a consequence, we have ¢ (Cx(k)) & My(A).
On the other hand, suppose that there exists a T € My(A) such that
O(T) = fe C(E), i.e., there exists ¢ >0 such that the set G =
{ec E:|f(a)| = ¢ is infinite. For each aec &, choose x,cl, with
||z, || = 1. Note that {x,} is a bounded sequence, but {Tx,} = {f(a)x,}
is an orthogonal sequence with || Tx,|| = ¢ which cannot have any
convergent subsequence. This contradicts the fact that T is compact.
Thus, M,(A) < & (C\(F)), completing the proof.

REMARK 8. We note that for every compact multiplier 7" of a
compact H *-algebra, there exists a net T,c B(A) with finite ranks,
such that T, converges to T in operator norm.

REMARK 9. For each Te M(A), let {T,} be the collection of all
restrictions of T to I,. Clearly {T,} is a family of mutually orthogonal
projections, since {I,} is an orthogonal family of subspaces. For each
Te M, A), we observe that there are only countably many T, different
from zero. (Observe that the set {a: f(a) = 0,f = &(T)} = Uy S.,
where S, = {a: | f(a) | = 1/n}, is countable since for each n, S, is finite.)
Hence, we may write

T =3 f(@)P,,, with lim|f(a)|=0.
=1 Py
This decomposition of T into a sequence of orthogonal projections can
be considered as an extension of the well-known spectral decomposition
of a self-adjoint compact operators of H *-algebras. In this case, 7T is
not assumed to be self-adjoint,

REMARK 10, By a similar consideration as given in Remark 2,
Theorem 3 may be considered as a generalization of Theorem (4.3)
of [9]. Furthermore, the maximal ideal space of the algebra J,(A)
of all compact multipliers of a compact H *-algebra A is homeomor-

phic to E, the set of all minimal two-sided ideals in A with discrete
topology.

REMARK 11. We remark that the specialization of general H*-
algebras to compact H *-algebras is necessary since in case of Xj,
the identity operator in B(X,) is compact if and only if X, is finite-
dimensional.
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