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H. H. JoBHNSON

Hyperbolicity is shown to be not an absolute invariant in
the sense defined by the author. Specifically, an example of
a nonhyperbolic system is given with a partial prolongation
which is hyperbolic. A large class of systems is found which
is closed under modified absolute equivalence and which con-
tains all hyperbolic systems., These ideas are applied to give
existence theorems for the initial value problem in several
types of nonhyperbolic systems.

Since hyperbolicity is conveniently defined for quasi-linear systems,
and as an additional reference, we define in §1 the ideas of partial
prolongations and absolute equivalence for such systems. Since these
problems and methods are generally local, we usually express them in
coordinate notation. Ehresmann’s jet notation could have been used
to provide an invariant treatment. We also assume all manifolds
and functions are infinitely differentiable, although it is not difficult
to formulate the theorems for less smooth functions using available
results in partial differential equations [3].

1. Definitions. Let D? and D™ be open sets in R? = {(a*, ---, 27)}
and R™ = {(z*, ---, a™)}, respectively.

DEFINITION 1. A system X on D? x D™ is a system of functional

and quasi-linear partial differential equations with 2!, ..., 2 as inde-
pendent and 2%, -.-, 2™ as dependent variables:
fa(ml-"'yxpyzly“':zm):oy a:]-r"'yaly
- : 02N o
Ly:A%zoz._}_Bﬁ: , 18:1,...“@1’
ox’

(we use the summation convention), where 7, A8 and B are (infinitely
differentiable) functions on D? x D™, It is also required that the
equations
« 02
fyzi-’_-'+fayzi:0; a:]-a"'yal
ox’
t=1,--,p,

be a consequence of Lf = 0. (We use the notation f¢,,; = df/oz*,
ete).
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420 H. H. JOHNSON

DEFINITION 2. If ¥ is the system in Definition 1, its total pro-
longation PX¥ is the system on D? x D™ x R = {(a% 2", %) | 4,7 =
1, .-, ;N 2t =1, ---,m} generated by the equations of Y together
with

2 2
az’f__ 1_ 0, api._ap_,.zoy
oxt ox’ ox’

A‘B’b apf AB'L ond Aﬂ'l, Ak
13567'{‘ 1y D505 + AT, D5
+Bﬂ7zlp§'+Bﬁy zj:()’
7\,,[,(:1,"',7%;7:,‘7.:1,"',p;le,“‘,Bl.

DEFINITION 3. A transform or change variables of is a diffeomor-
phism of the form

with inverse defined by ¢*, 4. Then Y is transformed according to
the usual rules:

0z’ _(—z 02" =1 > ko
T yz#axk +§Daxk"/’\ax‘b-

Thus, D? x D™ is regarded as a fibre space over D>,

DEFINITION 4. A system X, on D*? x D™ x D" = {(a*, 2", w") |t =
L,--e,o;A=1,ee,m;vy =1, -..,n} is a partial prolongation of the
system X in Definition 1 when it is generated by equations equivalent
to those in X together with equations of the form

s
uf—CE"gzj—DTZO, TY=1,,m,
&x
A
Pogs O g% g 5-1 ...,
oxt ox’

where C7?, D7 are functions on D? x D™, It is further required that
if PY is the total prolongation of XY as in Definition 2, then

A
B (Cp 22+ C, wip! + CF, it
+ D7, apt + D7, x) + Flpt 4+ G =0

are to be consequences of the equations in PY¥, When CV = 0,2 is
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called an admissible restriction of 3.

Observe that PY is itself a partial prolongation of 3. If 2* =
ZXat, -+, x?) is a solution of 3 then p? = 0z*/0x' define a solution of
PZX, and hence u' = C%(x, 2)(02*/0x?) + D7(x, ?z) define a solution of X..
The above definitions are somewhat more restrictive than in [2], but
they are essentially equivalent. In [2] it was shown that if ¥, is a
partial prolongation of X, then PY is a partial prolongation of ..

DEeFINITION 5, If X, %, ---, %, is a finite sequence of systems
such that for every ¢ =1, --.,n, %, is a partial prolongation or trans-
form of ¥, ; or else ¥, , is a partial prolongation or transform of X,
then X, and ¥, are absolutely equivalent.

2. Hyperbolicity. We now treat D? as a product space D?~* X
D' = {(«', ---, 2*7") x (x?)} and discuss systems “hyperbolic in the x?-
direction.” Any change of variables must preserve this product
structure on D~?,

Notation. If F(xt, 2%, 0z#/0x%) is any first-order partial differential
function, denote by F’; ; the second-order function

0%*
oxioms

0z
F;J':Fyxf_{thzf_,"{"Fy(azl/azi)
o’

(Note that F' and F;; may be regarded as functions on spaces of
jets. We always regard 0%*/ox'0x? = 0*%*/oxioxt.)

DEFINITION 6. The system X is tnvolutive in the x*-direction
if it is generated by equations of the form

fa(xly...yxp,zl_..,zm):_o’ azly"'yaly
»

—_ lAia._a_zi—B)':O, )\::1,"',’"”/,
&€
Lﬁ:fz_lcga ng;_l_Dﬁ:O, ley°"181°

It is required that

1) Dhem SERD L STM )

— TEL" — UEM* = 0 (mod f7, .- ., fU),

where the Rf*, TP and Uf are functions of «f,2*, M* and M?% ,,a =
1,--.,p—1. (In the following the indices a, b will run over 1, ...,
p — 1 unless noted otherwise, 7,7 =1, «-«, p; N\, gt =1, <+, m.)
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The equations M* = 0, are called the primary equations of while
equations (1) are the secondary equations.

Involutiveness is not in general preserved under partial prolonga-
tions, since, in the notation of Definition 4, no P? need occur. We
shall usually be concerned with invariants among systems involutive
in the x*-direction. By a calculation it can be seen that this concept
is preserved under a change of coordinates which leaves the product
structure on D? invariant. We introduce the following finer equiva-
lence relation.

DEFINITION 7. Two systems involutive in the x?-direction are
xP-equivalent if they are absolutely equivalent by means of a sequence
of systems %, %, ---, 2, where each Y, is involutive in the x*-direc-
tion.

DEFINITION 8. Let X be involutive in the a’-direction. Suppose
(in the notation of Definition 6) the equations of X can be arranged
so that the matrices A% and RFf* have the following property: there
exist nonsingular real matrices Vi(z, 2, &, ---, &,_) and Wh(x, 2, &, « -,
&,_) on D? x D™ x R** with inverses (V=% and (W)? such that on
D?» x D™ x R*,

ViAE (V)

and

WER{"S (W)

are diagonal matrices. Then Y is hyperbolic in the x?-direction.
By a calculation it can be seen that this concept is preserved
under an allowable change of variables.

THEOREM 1. Let X be hyperbolic in the x*-direction on a neigh-
borhood of (%, z,). Using the notation of Definition 6, let
zZ:¢2(x1:"'yxp_l)y )\::1,"',’}71/,

be defined on a meighborhood of (xf)e D™ and satisfy

(pz(xg):zéy ley"'ymy

f‘a(xl,._.ymp——lyxé;’@ly_..’Cpm):O’ azly"'yaly
and

Cga(xby xgy @Z)q)l(y z? + DIS)(xby mg: @A) =0 ) /8 = 17 tt Y Bl .

Then there exists a unique solution 2* = Fi(a*, «--, a?) of X on
netghborhood of (xf) satisfying
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Foa, «oe, a7l a2) = @Hat, «- -, 2?7, A=1, .-, m.

Proof. Apply standard existence theorems [3] to solve M* =10
with the given initial conditions. This solution is unique. The func-
tions L? satisfy a second system of linear hyperbolic equations with
zero initial values. By uniqueness, the L are zero. Similar arguments
show the f* to be zero when evaluated at the solution of M* = 0,

ExaMPLE. The system

M1:321:0, Mzzazz #_@.zi_:(), M? = _ =0
ox? ox’ ox!

is involutive in the a*-direction, but its matrix A%, having eigenvalues
0,0,1 and rank 2, is not diagonalizable. The partial prolongation X
obtained by adding (92'/0x") — ' = 0 and (ou'/ox*) = 0 is, however,
hyperbolic in the x*-direction, for this larger system may be written

0z'  _ 0 07" 0%

—_— T y —_— = 0 y _— 1 = O y
o b ow P
out oF
=0, — —u' =0,
o oar

The matrix A% is now diagonalized while Rf' is 1-dimensional, hence
diagonal.

This example shows hyperbolicity is not invariant under partial
prolongations, even if both systems are involutive in the a*-direction.
Yet the initial value problem can be solved for X in the example.
Given @*(2') as initial functions, let +' = 0¢'/dx' be an initial function
for ! in %,. Solving X, will yield a solution of X,

THEOREM 2. Let X be a*-equivalent to X, which ts hyperbolic in
the aP-direction. Then given the inttial conditions of Theorem 1 for
2 a solution may be found as tn Theorem 1.

Proof. It suffices to consider one pair at a time in the sequence
of systems joining ¥ and 2%,, showing that initial conditions carry
over naturally and recalling that any solution of one system induces
a solution of the others. Thus, one need consider only single partial
prolongations or changes of variables. In each case the result follows
from a detailed calculation.

3. Complex systems. In this section we determine a class of
systems which contains the hyperbolic systems and is closed under
x?-equivalence,



424 H. H. JOHNSON

DEFINITION 9. A system which is involutive in the x?-direction
is said to be z?-complex on an open set |Jc D? x D™ if, in the
notation of Definition 6,

(1) for every choice of variables «', -.-, 2~ and

(2) for every choice of functions Hj; on U,
the matrix A} + H}C% always has at least one nonreal eigenvalue at
each point of UJ.

Hyperbolic systems are not x”-complex since in the notation of
Definition 7, with H = 0 and &, = 6, A% is (real) diagonalizable, We
shall show that z”-complex systems form a class which is closed under
x?-equivalence. The complimentary class contains all systems hyper-
bolic in the x?-direction.

LEMMA 1. Let A be an m X m matrix of functions on an open
set Yo D? x D™ Let
v
e~ (o)
0

be an m X r matric of functions on |J where V is s x r of rank s.
Assume that for every r x m matrix function H on {, A + CH has
at least one nonreal eigenvalue at each point of Y. Thens=m — 2
and there exists on a neighborhood of each point in |J o nonsingular
matriz of functions of the form

I0
P =
0 Pl)
where I 18 s X s identity such that

W X
PAP = ( )

0 A,

where A, 1s 2 x 2 with monreal etgenvalues. The converse 1is also
true.

Proof. The converse follows immediately. The lemma may be
proved by induction on m = 2. If m =2, then s is 0,1 or 2. If
s =0, then C =0, hence A =CH = A= A,. When s=1 or 2 the
other hypotheses cannot be fulfilled.

Now assume the lemma true for all matrices A of order <m.
Given any R’ of order s x s and R” of order s X (m — s) one may

choose H such that
A+ CH = ( R
- A’ A :
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Then if A + CH is to have always a nonreal eigenvalue, certainly
s <m — 2. On a neighborhood |J’' of any point in |J a nonsingular
(m — s) X (m — s) matrix function P, may be found so that

PA = (V) =C
0

where V'’ is t X (m — s) and has rank ¢. Then
I0 (R’ R" (I 0 )_ (R', R'P )
0 pJ\4’ 4”)\0 P*) \C, PA"P™
has at least one nonreal eigenvalue for every R’, R”. Then so does

(I— K)(R’, R"P™ (I K
0 I/\C', PA'"P'/\0 I
for every choice of K.
In particular, if R’ = KC', R"” = KP,A” + KC'P, — R'KP,, it fol-
lows that P, A”P* + C'K has nonreal eigenvalues for every choice of

K. The induction hypothesis applies to P,A”P™ and C’, so on a
neighborhood of each point in |J’' < |J, there is a matrix P, such that

I 0 I 0 wr X’
( PlAnPI—l — (
0 P 0 P 0 A,

where A, is 2 x 2 with nonreal eigenvalues, I is ¢ x ¢t and ¢t < m —

s — 2. Now take
P:(IZ 0 <L 0
0 P,/\0 P,

where I, is the s X s and I, is the (s + t) X (s + t) identity matrix.

THEOREM 3. Let 3, be a partial prolongation of X where both
are 1nvolutive in the xP-direction. If ¥ is xP-complex on \J C D? x
D™, then X, is x®-complex on \J x R". If 2%, is xP-complex on Y X V
where \J ts open im D x D™, then 3 is a’-complex on .

Proof. Let X have the form in Definition 6 while Y, contains the
additional equations

0z

T __ E:ra
v Y o

~F =0,

ou* 0% ou’
. G:ra, _ Hna _ In — 0
ox? b one “ o ’

x 2
gaai_;_KzV?-a_z_ + N =0,
ox*® ox®
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T, 0=1--,n;7v=1,---,7. (Observe that 92*/02* can be eliminated
using equations in 2.) Definition 4 requires that the equations ob-
tained by replacing ou*/6x by expressions in p! and dp?/ox’ must occur
in PY¥, Considering the coefficient of dp?/0xz' in these expressions one
sees that for some functions NJ and Mj of ¢, 2%,

JI'EF = NiC§' .
and
Ef AL — HPE = M;C% .
Thus, if J = (JI"), £ = (Ef"), etc.,
EJ =CN and AE — EH =CM .

Now assume Y is xz?-complex, so for every choice of xt, ..., x?™*
and M,, A + CM, has a nonreal eigenvalue at each point of |J. To
prove that 2, is a?-complex we must show that

M, M,
(2) AG#CEKMM—Z
0o H \o o JN\T7 T
M, M,
has a nonreal eigenvalue for every choice of M,, --., M;, where G =

(G, H = (H™) etec.
On a neighborhood of (z,, 2,) ¢ |J let P be an m < m nonsingular
matrix of functions so that

PC_G)/):C

where V is s x » and of rank s<m — 2. Let A= PAP-'. By
Lemma 1 there is a nonsingular P on a neighborhood of (x,, z,) such
that PC = C and

par-— (1)

0 A,

where A, is 2 x 2 with nonreal eigenvalues. This P can be chosen

so that
(25 a)
A = .
—-ba

q1:(09°"3011a/’:)9 7'1:(0:"'y0;1y—"i)

Then the complex vectors
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satisfy
¢.PAP- = (a — 4b)q,, ", PAP~' = (a + ib)r, ,
while
¢.PCM,P~* = r,PCM,P7 = 0.

Hence g = ¢,PP and r = r,PP are complex eigenvectors of A which
are carried to zero by C.

Since AF — EH = CM, qF is an eigenvector of H belonging to
the eigenvalue ¢ — ¢b while »E belongs to a + ib. From EJ = CN
it follows that (¢E)J = (rE)J = 0. For every M;, H + JM, has these
same eigenvectors and values. Letting @ be % X n nonsingular so

that
~ J’
J =
@ ()
where J' is t X U with rank ¢ < n — 2, there must exist by Lemma 1

a matrix @, on a neighborhood of (x,, z,) such that

_ =~ o W’ Xl
QUQHQ™Q™ = (0 H1>

where H, is 2 x 2 with nonreal eigenvalues. Letting @ = Q,Q, it
follows that

Io0 Z(I 0 _( A G
(0 Q) 0 Q”) ~\QJM, QHQ + QJMOQ—1>'

The lower two rows in this matrix are (0 H,). It follows that for

every choice of M, ---, M,, the matrix Z has nonreal eigenvalues for
any (2, %) e U, (', -+, u") e R".

The converse follows at once by choosing M, = .-« = M; = 0 in
Z.

4. Examples. Several nonanalytic systems for which the initial
value problem may be solved are xz’-equivalent to systems hyperbolic
in the @*-direction.

THEOREM 4. The system

A

0z 0z 0%
:f(xly...,xpz e,

ox? T ot dxr—!

18 absolutely equivalent to a system hyperbolic in the x?-direction.
(We have not included such general systems is our definitions, but



428 H. H. JOHNSON

these can be extended in an obvious way).

Proof. The total prolongation is obtained by adding

Mi - az/am‘b - qi y Lij = aq@/axj - aqj/axz y
N, = aqz:/ax"b —f9 zt "—fy 4; _f: qa(aQi/axa) =0,
,5=1 -, ma=1---,p—1.

Then ¢, — f(x,2,¢, +++,q,-) = 0 is the O0-order equation; M, =0,
L,, =0 and N, = 0 are the primary equations, and M, =0, L,, =0,
N, = 0 generate the secondary equations. Since

Lab;p = Lpa;b - Lpb;a,

M., = M,, — L, ,

Na:p = Np;a + Ma(fy mP~z+ f: 2y 240 — fy qp) szp) - f) zLap

oq
- L; qa? apr - f: qp chcpa_wZ

- fy Qprb;a.

the secondary equations have matrix Rf* =0, in the notation of
Definition 6. The primary equations may be arranged in the form

M,=0,
La +Na:aqa—fa %‘—f’x“_fyzqa:();
? ox?  a a
N,=0,
with relevant matrix A} = 0,f,,. For any &, .-+, &,,, APE, is dia-

gonal,
The example in §2 can be generalized in the following

THEOREM 5. If the system X on D?* x D™

, 07 2 02"

- — A% g N=1, 0, m,
R ! "
3 __ ﬂazx B _
L{—Cl 8901 +D _Oy B_ly"'ylgly

18 tnvolutive in the x*~direction and satisfies

(1) A%, B? are constants,

(2) A has only real eigenvalues and elementary divisors of
degree at most 2,

(3) the auxiliary system is hyperbolic, then X is x*-equivalent
to a system hyperbolic in the x*-direction.
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Proof. Let P = (v)) be a nonsingular constant matrix with
inverse P! = (w}) so that P7'AP = diag (J,, ++-, J,, N, e e A = J

where
A1
Jk - 0 K,k .

At = N, k=1

Then AP = PJ, so

Consider the partial prolongation X, on D? x D™ x R* with new
variables #!, - .., u* obtained by adding to 3 the equations

70 — ou’ N ou’

=0 (no summation)

ox? ox

A
Ke:ue—?iio_lgzl , 0=1,.-+ k.

X

It is not difficult to check that X, is a partial prolongation.
Since K% 3 =1I°+NK% 1 — v¥*'M* 1, (no summation on #), %, is
involutive in the x*-direction and its secondary system is hyperbolic.

The primary equations of ¥, may be written in the form
M?* — 4 wK° =0, (summing on 6)
I*=0
where J = (j2). That is,

0%* 0z* . s, 0%
Al WLl T ——
0w o0x ox

- .7'50—17/05/“/9 —B*=0.
Since
WHA} — Jao W0y u;
= J§ — 0¥7Y5, 105 = J7 — 0¥ 75,
it n£29p—1, 1<y
S |0ifa=20p—-1, l1=Zp<r,

the relevant matrix for Y, is diagonalized.

COROLLARY. For a system satisfying the conditions of Theorem
5 the initial value problem is well posed.

The author would like to thank J. Jans for helpful discussions of
the algebraic problems in this paper.
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