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If {an}™ and {bn}T are real sequences with the &%'s all
positive, then a theorem of Favard states that there exists a
bounded increasing function ψ(x) which is a distribution
function for the polynomial set {φn}~i which is recursively
defined as follows: φ-ι(x) = 0, φo(x) = 1,

(1-A) φn+ί(x) = (δC — an)φn(x) — bnφn-l(%) (ft ̂  0) .

This study considers the problem of constructing ψ(x) for
certain classes of sequences {an}T and {bn}?. The sequences
considered all lead to functions ψ(x) which have a bounded
denumerable spectrum with n limit points (1 ̂  n < oo).

2* Notat ion, preliminaries, and summary* The following
notational conventions will be maintained throughout this paper:

( 1 ) {αΛ}~ is a sequence of real numbers.

( 2 ) {6JΓ is a sequence of positive real numbers.
For each nonnegative integer s,

( 3 ) Ks)}0°° is the sequence {cΛ+β}^0.
( 4 ) {φn](x)}1i is the sequence of monic polynomials defined

recursively by φ{ll{%) - 0, φ{

o

s)(x) - 1, and φ{

n%{x) = (x - a{

n

s))φ{

n

s)(x) -
b^φiUx) (n ^ 0).

( 5 ) ψ{s)(x) is a bounded increasing function defined on (— oo, + oo)

and having the property that

s :
(k(

n

s) Φ 0, n = 0, 1, 2, •). (ψ{s)(x) is known to exist by the above-

mentioned theorem of Favard.)

( 6 ) K{s)(x) is the continued fraction given by

K{s\x) =
x - as x — a1+s I x — α2 + s

( 7 ) S^(ψ(s)(x)) is the spectrum of the distribution function
ψ{s)(x), i.e., ^(ψ{s)(x)) - {x: -oo < χ < +oo and ψ{s\x + e) - ψ {s)(x-ε)
> 0 for all ε > 0}. In terms of measures, £^{ψ{s){x)) is the support
of the positive real measure induced by ψ{s)(x).

( 8 ) We shall say that the polynomials φls)(x), the bounded
increasing function ^ ( s ) (^) ; and the continued fraction K{s)(x) are

431



432 DANIEL P. MAKI

associated with the sequences {αn}~ and {bn}? if they are related to
these sequences by (4), (5), and (6) above.

( 9) C will represent the field of complex numbers.

In terms of the techniques which are used, this study is a con-
tinuation of the work of Dickinson, Pollak, and Wannier, [11], and
that of Goldberg, [13]. It differs from these in considering the
nonsymmetric case (i.e., we do not require that the α/s be zero).

We now state some previous results for reference and comparison.
The first of these is by Goldberg and many of our results will be
generalizations of it.

THEOREM 2.1. (Goldberg, [13]). Let {bn}™ be an arbitrary sequence
of positive real numbers with lim^oo bn = 0. Suppose {ψ{

n

s)}™ are the
sets of orthogonal polynomials corresponding to {a{

n

s) = 0}™ and {&is)}Γ,
then for each s Ξ> 0

( i) (l/x)K{s)(l/x) is a meromorphic function with the series
representation

oo O / J ( S )

where v~ A{

n

s)[a(

n

s)]-\

(ii) ^(f{s)(x)) is the closure of the set of poles of xK{s)(x);
namely, x — 0 and x = ±l/cc{

n

s), n — 1, 2, .

(iii) ψ{s)(x + 0) - ψ{s)(x - 0) = -Ai s ) « s ) )~ 2 , x = ±l/αi s ) .

(iv) f (s)(0 + ) - ψ(8)(0-) - -A{s).

(v) {xnφ{

n

s)(l/x)}™ converges to an entire function only if

Next, in [2], Krein used the theory of completely continuous
operators in a Hubert Space to prove

THEOREM 2.2. (Krein) Let {an}~ be a real sequence and {bn}~ be
a real positive sequence. Then a necessary and sufficient condition
that 6^(^(x)) be a bounded denumerable set with its limit points
contained in the set {aly a2, , cίn} is both {a*}S° and {δjΓ be bounded
and that limifi_oo g^ = 0, where gi3 is the entry in the ith row and
the jth column of the infinite matrix

(A - axI)X(A - aJ)X X(A - aj)

where
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A =

α0 bλ 0

b1 ax b2

0 b2 a2

We shall also need some well-known results about continued
fractions and orthogonal polynomials. These can all be found in
Chapter III of Szego's book, [16]. We collect them into the following
lemma.

LEMMA 2.3. The convergents of the continued fraction K{s)(x)
are the rational functions φni^ixϊ/φn^x), and the zeros of the monic
polynomials φ{

n

8)(x) are real, simple, and interlaced with the zeros of

We now enumerate those conditions which we will impose upon
the sequences {αΛ}~ and {δΛ}Γ. They are as follows:

( 1 ) the point set {a0, alt a2, •••} is bounded and has derived set
{al9 a2, , an], where aλ < a2 < < an 1 <: n < oo,

( 2 ) bn -> 0 as n-> oo .
Under these conditions we shall show in § 3 that K{s)(x) is mero-

morphic in C — {au - - , an}. In § 4 we let n = 1 and prove a generali-
zation of Theorem 2.1 above. Finally in §5 we consider 2 ^ n < oo
and again obtain results similar to those of Theorem 2.1

3* K{s)(x) is meromorphic in C — {al9 , an}. In order to show
that K{s)(x) is meromorphic in C — {au -- , α j we need a continued
fraction theorem which is due to Worpitsky. We state this for
reference.

THEOREM 3.1. (Worpitsky, [17], p. 42) Let a2,az, -—be complex
functions of any variables over a domain D in which \ ap+1 \ ̂  1/4,
p = 1, 2, . Then the following statements hold:

(i) The continued fraction w = — i + -^- + -^J + converges

uniformly over D.
(ii) The values of the continued fraction and of its approximates

are in the circular domain | w — 4/3 | <̂  2/3.

We now prove our first result.

THEOREM 3.2. If the real sequences and {δjΓ satisfy the
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following conditions:
( 1 ) {α0, αx, •} is a bounded point set with derived set {au , an}

where ax < a2 < < an, 1 ^ n < co?

( 2 ) 6n > 0 w = 1, 2, ami bn —• 0 as w —> co, £/^w /o?

s Ξ> 0 ίfce continued fraction

[s) I a; - a[s) γ ( θ )

converges to a function which is meromorphic in C — {au , an}.
Moreover this convergence is uniform in compact sets which do not
contain poles of K{a)(x).

Proof. Using* an equivalence transformation we can rewrite
K{s){x) as follows:

( ) I l ! l

_ b{

2

s)/\(x - a[s))(x - a{

2

s))] \ .._

I i

Next let ε > 0 be given. Since the derived set of {a0, ax, •} consists
of the finite points al9 * ,α:Λ, there exists Nε such that for every
i ^ JVe, I αf — aό I < ε/2 for some j e {1, 2, , n}β Also δί—>0, so
there exists ikfε such that for every ί ^ Me, \ &, /(ε/2)21 ^ 1/4. Therefore,
if we restrict x to the domain Dε — {x: \ x — aά \ > ε, j = 1, 2, , n},
then for each i such that i ^ max {Λίε, iVε} we have

I bi/(x - a,){x - a^) I ̂  | δ,/(ε/2)21 g 1/4 .

Now let L(e) = max {Me, Nε} and set

a? — αvs; x — α

Then by Theorem 3.1 and our remarks above we see that K{

L

s){x)
converges uniformly in D and moreover that the values assumed by
K{

L

s)(x) and its convergents all lie in the set \w — 4/3 | <̂  2/3. Since
the convergents of K{

L

s){x) are rational functions this means these
rational functions have no poles and hence are analytic in Dε. Thus
by the uniform convergence K{

L

s){x) is also analytic in Dε. But by
definition K{

L

s){x) is just the tail end of K{s)(x) and hence K{s)(x) is
meromorphic in Dε. Moreover this holds for each ε > 0, so K{s)(x) is
meromorphic in C — {αu , αn}.
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We now consider the behavior of K{s)(x) for large values of x.
To do this we let K^\w) ~ K{s)(l/w) and consider w small. We have
the following result.

THEOREM 3.3. For each s ^ 0 the function

is analytic about the origin and has value 1 for w = 0.

Proof. By the definition of K{*\w) we have

i I i
_ bi,s)w2/[(l - < > w ) ( l - a{

2

s)w)] 1 _ < > #

Now conditions (1) and (2) on the sequences {α̂ } and {6J imply that
both these sequences are bounded. Thus for \w\ small enough we
have

I δ5β).w8/[(l - α&wXl - ais)w)] \ ̂  1/4 i - 1, 2, 3, . . . .

Hence by Worpitsky's theorem, (Theorem 3.1 above), K£](w)/w is
analytic about w = 0. Also, by inspection we see that K^s)(w)/w has
value 1 at w = 0.

We now note two results which will aid in the construction of
ψ{s)(x) in § 4 and § 5. The first is an important recursion formula
which says that for s Ξ> 0 and n ^ 2 we have

(3-A) φls\x) = (x - a^)φ^\x) - b^ φ^°\x) .

The proof of this formula is a straight-forward induction argument
and is omitted here. The other result is a complex orthogonality
relationship which is proven as a lemma.

LEMMA 3.4. For each s ^ 0 and 0 ̂  p <̂  n there exists R > 0
such that

l/(2πi)\
(3-B) J\X\=R

(W Φ 0, s, n = 0, 1, . . . ) .

Proof. From Lemma 2.3 we know that

lim φ^i\xW;\x) = K^(
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Hence if we divide (3-A) by φn-ι](x) and let n —> oo9 we obtain

(3-C) 1/K{s)(x) = (x - a{

o

s)) - b[s) K{1+s)(x) .

Next we combine (3-C) and (3-A) by eliminating (x — a{

o

s)). After
simplication this gives

φ?(x)K"(x) - φ«ϊϊ\x)

We now note that the term in parenthesis on the right of (3-D) is
just the left side with a change of index. Therefore we can interate
this formula, and recalling φ{

o

j) = 1, φ[il = 0, j = 1, 2, , we obtain

(3-E) φ

Now we multiply (3-E) by xp/(2πί) and integrate about a circle
I x I = R in the complex plane. Since αs^Jiϊ^ίc) is analytic, this gives
us

(3-F) - i - ί xpφ{

n

8)(x)K{s)(x)dx -
27Γ^ J I * I = Λ

where k{

n

s) = Π?=i ^ls) ^ 0 because each 6̂  is positive. In the integral
on the right of (3-F) we now let x = 1/w. We also choose R large
enough so that each of the functions K^s)(w)/w, i — 0, 1, , n is
analytic in the disc | w \ = 1/R. This is possible by Theorem 3.3.
Then by using the residue theorem and the fact that K^s)(w)/w has
value 1 at w = 0, i = 0, , n, we have

xpφ{

n

s)(x)K{s)(x)dx
i22πi

= ML \
2πi j\w\=i

\ W j
2πi j\w\=iiR I w J I w

Sections 4 and 5 will change the above complex orthogonality
into a real orthogonality relationship and hence obtain ψ{s)(x).

4* Constructing ψ{s)(x) for one limit point* We now assume
that in Theorem 3.2 n = 1, i.e. a{ —>ax as i—> <>o. As a further
simplification we initially choose ax — 0 and then later show this
restriction is not needed. Now in order to convert (3-B) into a real
integral, we first obtain a Mittag-Leffler type expansion for the
function K{s)(x). For this we need a theorem of Montel.
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THEOREM 4.1. (Montel, [14], p. 38) A necessary and sufficient
condition that a meromorphic function f(z) be the limit of rational
functions whose zeros and poles are real, simple, and interlaced on
the real axis is that f(z) have the form

f(z) = B- Az + ± An(l/(z - an) + l/an) ,
n=l

where the numbers B, A, An, and an are all real, A and An are all
of the saiίne sign, and the series Σ Γ An(an)~2 is convergent.

We now obtain our expansion for K{s)(x).

THEOREM 4.2. With the hypothesis of Theorem 3.2 and ivith
n — 1, ax — 0, the function K{s)(x) has the form

K[s\x) = A{s)/x + Σ A{

n

s)/(x - a{

n

s))

where A{s) and A(

n

s), a — 1, 2, , are all nonnegative and ΣΓ=i^i s ) < °°.

Proof. From Theorem 3.2 we know that K{s)(x) is meromorphic
in the set C — {0}. Thus K*s)(w) — K{s)(l/w) is also meromorphic in
C — {0}. However, by Theorem 3.3, Kis){w) is analytic at w = 0, and
hence K*](w) is meromorphic in C. Next from Lemma 2.3

K{s\x) = lim φ {x)

φ(

n

s)(x)

so that

= lim
wnφ{

n

s)(l/w)

Also from Lemma 2.3 the rational function φ{^1

s)(z)/φ<

n

s)(z) has its zeros
and poles interlaced on the real axis. Thus wnφ{^\s)(l/w)/wnφ{

n

s)(l/w)
also has its zeros and poles interlaced on the real axis. Now since
K{s)(x) is known to converge uniformly on those compact sets of
C - {0} that exclude the poles of K{s)(x), it follows that Kis)(w)
converges uniformly on those compact sets of C which exclude poles
of Kis)(w). Therefore we can apply Theorem 4.1 to Kίs)(w). This
gives

K{s)(w) — C{s) — E{s)w A- V 7?(s) Π l(w — β{s)) 4- 1 /β{s))
1

where B^s),Bls), . . . are all of the same sign and ΣΓBis)[β[

n

s)]-2 con^
verges. Next, iίis)(0) = 0; so C(s) = 0. Thus converting to Kis)(x),
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we obtain

K{s)(x) = — B l _ **
- i LA81]2 (x -

Now, letting Ais) = -B^,A^ = -Bi>η[β^γ and <s> = I/ft", gives
us

where Ais\ A[s\ A\>s\ are all of the same sign and XΓ A{

n

s) converges.
Finally the fact that the A s ) 's are actually non-negative follows from
Hurwitz's theorem and the special interlacing of the zeros of φ^lι](x)
with those of φ{

n

s)(x). This interlacing means that Φ{n-ιs)(x)/Φn](x) has
only positive residues, and by Hurwitz's theorem the limit function
K{s)(x) must have nonnegative residues.

Next, before proving our main theorem of this section, we state
a result of Carleman which will give us uniqueness in our result.

THEOREM 4.3. (Carleman, [15], p. 59) / / Σn=il/i/57 = oo, then
ψ{s)(x) is unique when it is normalized by the conditions ψ{s)(~ oo) = 0
and for x Φ - oo, ψis)(χ - 0) = ψ{s)(x).

We now obtain ψ{s)(x).

THEOREM 4.4. Let the real sequences {αjΓ and {δjf satisfy the
following restrictions:

( 1 ) a{ —• 0 as i —> co.
( 2 ) bi > 0 /or eadi ΐ a^d δ, —»0 as ΐ—> CKD. T%e% i/ Ί/Γ(S) a^d

K{s)(x) are defined by (5) and (6) o/ § 2, we

( i )

Kw(x) = ^— + Σ Ais>/(x - a\

where the A{

n

s) and A{s) are all nonnegative and Σ Γ A{

n

s) < ^ .
(ii) ψ{s)(x) is a unique jump function and ^(ψ(s)(x)) is con-

tained in the closure of the set of poles of K{s)(x).
(iii) ψ(s)(x + 0) - ψ{s)(x - 0) = A{:] for x = a{

n

s).
(iv) π/r

Proof, (i) is just Theorem 4.2. To prove the remainder of the
theorem, we first note that condition (2) together with Theorem 4.3
guarantees that ψ{s)(x) is essentially unique. Therefore we need only
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show that a jump function with jump A{

n

s) at a{

n

s\ n = 1, 2, and
jump A{s) at x = 0 is actually a distribution function for the polynomial
set {φ{

n

s)(x)}~. Thus let ψ{s)(x) be such a jump function and consider

S +oo

xpφ{

n

s)(x)dψ{s)(x). By the definition of the Riemann-Stieltjes integral

we have

[+O°xpφ{

n

s)(x)dψ{s)(x)

Σ
i

provided the series on the right converges. To show this convergence
and to evaluate the sum, we combine Lemma 3.4 and Theorem 4.2.
This gives us

1 \ T ^ίs)/ γ \J A S , γi A/ \l _ ^ 7 ( s )

— Γ I X ψn {X)< -f- 2LJ TTΓi ~ °n,p Kn

Now R was chosen so that | w \ ^ 1/R contained no singularities of
K^\w), Thus \x\ < R contains all the singularities of K{s)(x). Also
the sum converges uniformly and absolutely on \x\ = R, so we can
integrate the series term-by-term. We use the residue theorem and
obtain

p φ ) Σ ψ [ ψ γ φ ^ ) p
3=1

S +oo

xpφ{

n

s)(x)dψis)(x)

we see that

k{

n

s) Φ 0 , w = 0, 1, 2, , s ^ 0 .

Thus with respect to ψ{s)(x), φn\x) is orthogonal to xp, p = 0,1, ,
n — 1. Hence by definition, ψ{s)(x) is a distribution function for the
polynomial set {φ(

n

s)(x)}T.

It is of interest to note that the converse of Theorem 4.4 also
holds. This follows immediately from Krein's result which we labeled
Theorem 2.2. Thus suppose that the bounded increasing function
ψ(x) has a bounded spectrum with its only limit point at zero. Then
by Theorem 2.2, lim(ί,i)_>(00,00) gi3 = 0 where gi:j is the entry in the ith
row and jth column of the infinite matrix
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α0 bλ 0

bλ aλ b2

0 b2 a2

0. Combining these comments withThus we see 6{ —> 0 and
Theorem 4.4 gives

THEOREM 4.5. A necessary and sufficient condition that
be a bounded set with a single limit point at zero is that the sequence
of rational functions φniι)(x)/φn)(x) converges to a function K{s)(x)
which has an expansion of the form

Kis)(x) = A{s)/x A(

n

s)/(x - a(

n

s))

where A{

n

s) > 0 for each n and Σ Γ A{

n

s) < oo, Moreover ψ{s)(x) is a
jump function with jumps A{

n

s) at a(

n

s) and A{s) at x = 0.

We now show that in Theorem 4.5 the limit point of the spectrum
does not have to be a x = 0.

COROLLARY 4.6. A necessary and sufficient condition that
£^(ψ{s){x)) be a bounded set with a single limit point at x — a Φ co
is that the sequence of rational functions φ^ll){x)\φ^\x) converges to
a function K{s)(x) which has an expansion of the form

κ{s)(x) =
Λ(

+ Σ+ Σ
x - a ^ i x - (a + < s ) )

where A{s) ^ 0 and A(

n

s) > 0 for each n with Σ Γ A{

n

s) < oo. Then
ψ{s)(x) is a jump function with jumps of A{

n

s) at a(

n

s) + a and A{s) at
x = a.

Proof. By Theorem 2.2 £^{f{s){x)) is a bounded set with a single
limit point at x — a if and only if α̂  —> a and b{ —+ 0. Now

so that

φXUix + a) = (x - (an - a))φ{

n

s)(x + a) - b^l^x + a) .

Thus the sequence of polynomials {φn\x + α)}~ is associated with the
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real sequences {an — a}ζ=0 and {bn}?. Hence if an —> a and bn —> 0,
then by Theorem 2.9 the polynomials φ{

n

s)(x + a) are orthogonal with
respect to a function ψ[s)(x) which has a bounded spectrum with its
only limit point at zero. Now

[s\x - a)

i\x + a)df[s\x) ,

so the polynomials {φ{

n

s)(x)}T are orthogonal with respect to ψ[s)(x — a).
But b{—>0 implies that ψ{s)(x) is unique, so ψis)(x) = ψ[s)(x — a). Also
by Theorem 4.4 φ^lί](x + a)/φls)(x + a) converges to a function Kis)(x)
which has an expansion of the form

Λ(S) °3 Λ(s)

x — a{

n

s)

Consequently, φn~ι)(x)/Φn)(x) converges to a function K{s){x) which has
the form

K{s\x) = KΪ8)(x - a) = — + Σ Λ "
x - a i x - (a{

n

s) + a)

Moreover, ψ[s)(x) has a jump of A{

n

s) at a? = α^s), so i/r(s)(x) = n/r|s)(^ — α)
has the same jump at x = α^s) + α. This proves the corollary.

We now turn to an interesting convergence question. We have
shown that if a{ —* 0 and b{ —• 0 then

is a meromorphic function. Hence we ask, when does the sequence
{Fis)(w) = wnφln)(l/w)} of polynomials converge to an entire function
so that the numerators and denominators of the rational functions
which converge to K{*s)(w) will themselves converge to entire functions.
The techniques of this section were used by Dickinson, Pollak, and
Wannier, [11], when they considered the special case a{ = 0, i = 0, 1,
and Σ Γ bi < OO.

THEOREM 4.7. / / Σ Γ I a{ \ < oo and if Σ Γ &K °° then the sequ-
ence of polynomials {Fis)(w)}™ converges to an entire function F{s)(w)
as n —> oo.

Proof. Since Fis)(w) = wnφ(

n

s)(l/w) and
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we have

Next we let

Then

so

Since we also have

this gives

DANIEL P. MAKI

G{

n

s\w) = max

w

^ { 1 + I α<*> i I w \}Gίs\w)

max

Now by definition F£s]{w) = 1, so
above inequality, we obtain

and thus

We next note that the infinite product

= 1. Then by iterating the

w\ + b^ I w2

w2\} .

converges uniformly for values of w in a bounded domain because of
the hypothesis Σ Γ δ* < °° a n d Σ Γ I α» I < °°. Using this we can show
that the sequence {Fis)(w)}~ is a Cauchy sequence in any bounded
domain. We proceed as follows:

I Fi'Uw) - F{

n

s\w) I = I -a{:]wFls){w) - b^w'F

so

\ a{

n

s) \ + ¥n

s) \ w \ )

and thus for each N
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- Fl'\w) I ^ N~l

i=o

< \w\
ίn+N-1 -1

E{s\w)\ Σ ( | α ί s > l + ^ s ) | w | ) ^ .
I i — n J

Now let ε > 0 be given and suppose w is in the domain D =
{w: \w\^ M). Since ΣΓ(|β»l + &») converges, we can choose n so
large that for each N ^ 1 we have

Thus we see that in the uniform norm {Fis\w)} is a Cauchy sequence
in the domain D, and hence converges uniformly to a function analytic
in D. Since this holds for all bounded domains, the resulting function
is entire and the theorem is proven.

Next we give some necessary conditions for the convergence of
F{

n

s)(w) to an entire function F{s)(w). We first note a fact about the
structure of F{

n

s){w). Namely; for s ^ 0 and n ^ 2

Fis)(w) = 1 -

«-A>

+ ̂ Σ
j

+ 0(w3) .

The proof of (4-A) is a simple induction argument and is omitted
here.

THEOREM 4.8. The following conditions are each necessary for

the convergence of the sequence {F{

n

s)(w)} to an entire function.

( i ) Σo°° en converges.

(ii) Σo~αί< oo.

(in) Σ Γ δ < < °°.

Proof. Suppose the polynomials Fis)(w) converge to the entire
function F{s)(w) = e[s) + e£β)w + els)w2 + . Then by (4-A) we have

βt ) ^ 1, β( ) = 2Π=o αίβ) and

e{

3

s) = lim -{ Σ αiβ)αj 8 ) - Σ

Now for each n

2 71

0 / 0

therefore,
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\2 n

\2-Jaί j — 2J \ai
V /y(s)/7(s) _ \ 0 / 0

and thus

- ""i I

)2 n

- Σ (αί

Next since Σ Γ α s) = e2, the above can be written

= el ~ lim Σ [(αίβ))2 + 2&ίs)] .

Hence we see that ΣΓ=o((^s))2 + 2 ^ s ) ) = e\ — 2β3, and since each b{ is
positive, we can conclude ΣΓ=o&; < °° and Σ°Lo ̂  < °°.

In the special case of positive α/s we can combine Theorem 4.7
and 4.8 to yield necessary and sufficient conditions for convergence
of Fis) to an entire function.

COROLLARY 4.9. // a{ and b.: are positive for each i then the
following are necessary and sufficient conditions for the polynomials
Fis)(w) to converge to an entire function.

(i) Σo~αi< co.

(ϋ) Σ Γ & i < °°.

Proof. Since each a{ is positive, conditions (i) and (ii) which are
necessary by Theorem 4.8 are also sufficient by Theorem 4.7.

5* Constructing ψ{s)(x) for n ^ 2. In this section we allow the
point set {α0, aλ1 •••} to have any finite number of limit points. We
are again able to construct ψ{s)(x) by using Theorem 3.2 and Lemma
3.4. First, however, we must obtain a Mittag-Leffler type expansion
for the function Kis)(x) of Theorem 3.2 in the case where 2 ^ n < co.
The following preliminary work will aid in obtaining this expansion.

We first recall that from Theorems 3.2 and 3.3 we know that
K{s)(x) is meromorphic in C — {al9 , an} and is analytic outside some
circle | x \ = R. Also, K{s)(x) is the limit of rational functions whose
poles and zeros are real, simple, and interlaced; so the same properties
hold for it. Hence we can find real numbers β0 and βn such that
βo < βn and K{s){x) is analytic in C — [βQ, βn]. We also choose
βi9 i = 1, 2, , n - 1 in such a way that a{ < & < ai+1 and K(8)(x)
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is analytic at βim This is possible because K{s)(x) has only a countable
number of singularities in C — {au , an}. Next we label the poles
and residues of K{s)(x) as follows:

(a) {α$}r=i is the set of poles of the function Kis)(x) in (β^u βj
ordered so that | al% — a{ | ^ | aίs)

k+1 — a{\ ί = 1, 2, , n; k = 1, 2, .
(b) A[% is the residue of K{s) at the pole α $ .

We label the poles and residues of the rational functions Φm±l](x)/φΐ'(x)
in a similar manner:

(c) {a[%Jΐ^ is the set of poles of φ^ixW^ix) in (&_!,&)
ordered so that | a\s)

k,m — a{ | >̂ | α$+i,m — <** I ί = 1> 2, , w; & = 1, 2, ,
m(i); m = 1, 2, m(l) + m(2) + + m(tι) = m,

(d) Aifi,m is the residue of φ{Z±\](x)lΦ^(x) at < > f m .
Now, from the interlacing of the zeros and poles of φmtl)(x)/φϋ)(x)

we know that the residues A ^,m are positive. Also by Hurwitz's
theorem as m —> oo A 8

tlttΛ-+ Al'l and α ^ m - ^ α : ^ . This leads us to
represent the function φ{^t\]{x)lφ\n{x) as a sum of functions. Namely,
let / ( s )(ΐ, m; a?) - Σ S } Aίfi,m/(ίc - αf i)?n). Then

J'CS + D / Λ . X n m{i)

( 5 _ A )

where f{s)(i, m; x) is a rational function whose poles are real, simple,
and have positive residue. But any rational function whose poles are
real and simple with positive residue also has real simple zeros which
interlace with the poles. Thus φm-l)(x)/φm)(x) is the sum of n rational
functions /(ΐ, m; x) each having real, simple poles and zeros which
are interlaced on (βi_lt βi) i — 1, 2, , n. We next need a lemma
concerning the residues A\8)

ktn and Aγ)c.

LEMMA 5.1. For each s >̂ 0 ive have
(i) limm^Σ?=iΣ?i=¥Aίri i l l ι = l,
(ϋ) Σ ? = i Σ Γ = i ^ β ί ^ l .

Proof. Since

and since this convergence is uniform about w = 0, we see from
Theorem 3.3 that

<5_B) Bm/l^k-L} =1.
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But by (5-A)

n mii) Λis

• = Σ Σ - "

n mii) Λi

— NT1 V Λ *
s)

k__ y V~< Ή-j k.m

»=i k=i 1 - wa[s

t

}

k>v

So by setting w = 0 we obtain

{ 1 rh{s+1)C\ lin\ ϊ n m{ί)

1 ψm-ι \1-/W) I _ s? SP Λis)

and (i) of the lemma follows from (5-B).
Next, as noted above, A[s)

k)m —->A 'i as m—>co. Therefore, for
each integer if,

Σ Σ AΪX = lim Σ Σ Aίfî
ΐ = l fc=l m-»°o ΐ = l fc=l

% m ( i )
< l i m V V Λ{s) — 1

Hence the monotonically increasing sequence {Σ?=i Σf=i ^S!i}ϊ=» is
uniformly bounded. Thus Σ?=i ΣΓ=i <̂f* ^ 1 a n d (ϋ) holds.

Since much of the remainder of this section deals with subsequences
of subsequences, we shall attempt to simplify our notation by some
temporary conventions. First we assume that s is a fixed nonnegative
integer and then we suppress it from our notation. Next we change
our multiple subscripts to arguments. Thus, in particular, we now
write A$ = A{i, &), A[%m = A(i, k, m), a[% = a(i, k) and a\%n = a(i, k, m).

We now consider the sequence {/(I, m; x)} of rational functions
and proceed as follows to obtain a convergent subsequence: For
n ^ 1, let D{l,n) be a domain defined by

D(l, n) — {x: \ x — ax \ ̂  1/n} .

Then from our labeling of the poles of K(x) we know that only finitely
many of the points α(l, k), (k = 1, 2, •), lie in D(l, n). Let these
points be α(l, 1), α(l, 2), , α(l, iSΓw). Now as m —* oo, α:(l, fc, m) —>

, fc); so there exists an integer Λfn such that m ^ Λfn implies

\a(l,k,m) -a(l,k)\ ^1/n, k = 1, 2, . . . , Nn .

Therefore, if we restrict $ to the domain

D * ( l , n) = { x : \ x - a λ \ ^ 1/n, \ x - a ( l , k) \ ̂  2/n, k = 1, . , Nn}

and choose m ^ Mn, we have
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A(l, k, m) ^ ^ A(l, k, m)
k=i x — α'(l, k, m ) £ Σ

A=I I x — oc(l, k, m)

fc, m )

This means that the sequence {/(I, m; x)}^% is uniformly bounded in
D*(l, 7i) and hence contains a subsequence which converges uniformly.
Moreover, each function in this sequence is analytic in D*(l, n), so
the limit function is also analytic in D*(l, ri). We now repeat this
process for each n, starting with n = 1 and at each stage using the
convergent subsequence obtained at the previous stage. Then we
apply the Cantor diagonal process and obtain a sequence which conver-
ges uniformly on every compact subset of C — {aλ\ a(l, 1), α(l, 2), •}.
Denote this final subsequence by {/(I, m'; x)} and let the limit function
be fx(x). Then

lim (/(I, m'; x)) = fx{x) ,

and the convergence is uniform on compact subsets of

C - {ai; a(l, 1), α ( l , 2), . . . } .

Therefore, /^aj) is analytic in C — {αx; α(l, 1), α(l, 2), •}.
We next consider the sequences {/(2, m'; x)}, and by repeating

the above process we obtain a new subsequence which converges
uniformly on the compact subsets of C — {a2; α(2, 1), α(2, 2), •}.
Let f2(x) be the limit of this sequence. Then f2(x) is analytic on
C - K ; α(2,1), α(2, 2), . . .}, and

/2(α;) - lim /(2, m"; a?)

where m" is a subsequence of m'. Continuing in this manner with
{/(3, m"; ,τ)}, etcM v/e eventually obtain a subsequence {m*} and func-
tions /i(#), , /w(aj) such that

lim /(ΐ, m*; x) - /,(x) , i = 1, 2, . . -, n ,
*

where /*(#) is analytic in C — {α ;̂ α(i, 1), α(ί, 2), •}. Next for each
m we have

/ ( I , m;x)+ •-. + f(n, m; x) = Σ Σ A ( ' ' , f e ' W ) ,
ΐ=i fc=i it* — α ^ , k, m )

and since
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K(x) = lim Σ Σ J — A ( ί ' ky m)

m-»oo ί=i k=i x — α ( ^ , A:, m )

= lim Σ Σ A { ί ' ^ ^ \ Λ ,
m*->oo t=i fe=i x — α ( t , fc, m * )

we see that

K(x) = lim {/(I, m*; a;) + + f(n, m*; x)}

+ + /•(»)

This, in turn, means that for each i, (1 ^ i ^ n),f{(x) has a simple
pole at the points α:(i, l ) ,α(i, 2), ••• because K(x) has simple poles at
these points, while fi(x), (i Φ j), is analytic here. We summarize the
above results as follows:

THEOREM 5.2. For each s Ξ> 0, if {a0, ai9 •••} has derived set

{au a2, , α:J where each a{ is finite and if {6JΓ satisfies h{ > 0

/or βαcfc i and b{ —> 0, ίfeew ίfee continued fraction

cα?̂  be represented in the form

where each fis){x) is meromorphic in C — {αj α^d analytic in
C - [&_!, A], /or /Ŝ s satisfying

β0 < a, < A < a2 < . . . < / S ^ <an< βn.

We now turn to the problem of expanding each function fls){x)
in a Mittag-Lefϊler type series. We have the following result:

THEOREM 5.3. For each i e {1, 2, ••-,%} we

x — cti fe=i α; — α(X fe)

(a) ΣΓ=i
(b) Σ ? = i ^ = 0.

Proof. We first recall that each /(ΐ, m; x) is a rational function
with its zeros and poles interlaced. We also note that K{x) has residue
A(ί, k) at the pole a(i, k), i = 1, , n; k = 1, 2, - . Therefore, since
K(x) = fλ(x) + + fn(x), it follows that f{{x) has residue A(ί, k) at
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the pole a(i, k) because for j Φ ί fό{%) is analytic at a(ί, k), k = 1, 2,
Next f{(x) is meromorphic in C — {αj, so setting x = a{ + 1/y,
fi((Xi + 1/y) is meromorphic in the finite y plane with poles at the
points y = l/(a(i, k) — a^, k = l,2, , and residue —A(ί, k)/(a(i, ft) —α^)2

at l/(a(i, k) — a^. We now apply MonteΓs theorem (Theorem 4.1
above) to the meromorphic function fi{a{ + 1/y). This is possible
because

fiiati + 1/y) = lim f(ί, m*; a, + 1/y)
*

and f(i, m, z) is a rational function whose zeros and poles interlace.
This gives

ψ -A(i, k) ί 1 , a{i, k) - at \
έ l (a(i, k) - atf \ y - l/(a(i, k) - α<) 1 J

where

= Σ A(i,
ki

Changing from the τ/-plane to the α -plane, y = l/(x — αrj; so

Σ
/y» sy Γ\fi<Ί lr\ f\r /vί'Ί l/"\ /V
X — (Xl CX\ij tϋ) — Gl^ (X\i, fϋ) — (Xi t

+x — oίi k=i x — a(i, ft)

This gives the desired representation, and we need only show
Σ* = 1 Bi = 0 to complete the proof. Now

K(x) = fλ{x) + f2{x) + + fn(x) ,

so

K(x) = - Σ B{ + Σ - ^ — + Σ Σ A(\y^ .

Hence

+ Σ Σ A (

_ a(ι, k)w

so ίΓ*(0) = -Σ?=i-Bi B u t by Theorem 3.3, ίΓ^O) = 0, and thus
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Σ? = 1 Bi = 0 and the proof is complete.

We are now ready for the main theorem of this section.

THEOREM 5.4. Let the real sequences {α<}~ and {6JΓ satisfy the
following conditions:

( 1 ) The derived set of {α0, alf α2, •} is {au a2, , αTO}, where
each at is finite and aλ < a2 < < α%.

(b) 6i > 0 for each i and l i m ^ bt = 0.
Then if ψ{s)(x) and K{s)(x) are defined by (5) and (6) of §2, we have

( i) K{s)(x) is meromorphic in C — {α1? , an) and has a repre-
sentation of the form

κw{%) Σ ^ + v v •*
„• -i /y» /y x -l , i /-y» sy \ b >
* — -1 f(/ — CC ^ % — i.κ, — i ^ — ( x . ^

where A[s) >̂ 0 cmd A^i < 0, ΐ = 1, , n; k = 1, 2, α^ώ ΣΓ=i ^ ! i < °°,
i = 1, 2, , w.

(ii) τ/τ(s)(a;) is α unique jump function and S^(ψ{s)) is contained
in the closure of the set of poles of K{s)(x).

(iii) ir{s)(a\s

}l + 0) — ψ(s(α: fi — 0) = A\a\ i = 1, , n; k = 1, 2, .
(iv) ^ ( s )(α: + 0) - ψ{a)(αi - 0) = A\s\ i = 1, 2, , n.

Proof, (i) is just Theorems 3.2, 5.2, and 5.3. The uniqueness of
ψis)(x) follows from condition (2) and Carleman's theorem (Theorem 4.3
above). Thus to complete the proof we show that a jump function
ψ{s)(x) with jumps defined by conditions (iii) and (iv) is actually a
distribution function for the polynomials {φ{

n

s)}T defined by (4) of § 2.
Now by Lemma 3.4 we have for 0 ^ p 5g n and some R > 0

If ί n Ί
\ xpφ{

n

s)(x)K{s)(x)dx = Ί Π ^ + s r W
2πi JI*I=Λ U=i J

By using the representation for K{s)(x) given by part (i), this can be
written

1 \ rprf>{s)(r)is" ^ S ) _i_ V V *'**
's-TΓη ) \ Ύ - \ — π I 0 i rv» f\r A i j, i /γ /Ύ^s'
Z i i t I J\x\ — K K.% — i t{y — CC, ^ —- 1 « —-i tV — ULA h

(5-C)

Now since i2 was chosen so that (l/iίOi^+^w) was analytic in
{w: \w\ ^ 1/R}, i = 1, , n, it follows that UL (S)(^) is analytic outside
and on \x\ = R; so the series converges uniformly here and we can
integrate term-by-term. This gives



ON CONSTRUCTING DISTRIBUTION FUNCTIONS 451

I f n Λ(s) n co Λ(s)

^r χpΦίe)(χ) Σ — — + Σ Σ A < * {dx}
TΓQ l l r l — T ί Ί 1 Ύ f\ Ί 1 If 1 <7* ίΎ^s'2πi

= Σ (ai)pφ{

n

8)(ai)Al8) -i- V. V (fγ<8)Λ*Λ{aUfγ\8hA< lZ-i 2-k K^iΛ) Ψn X^iΛJ^iΛ

Therefore, if we define ψ{s)(x) to be a jump function with jumps
given by (iii) and (iv), then

Thus τ/τ(s) is a distribution function for φ{

n

s)(x) and the proof is complete.
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Goldberg of the University of Michigan. Discussions with him and
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