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Suppose that ¥ is a field of subsets of the set S, and suppose
that z and 7 are complex-valued finitely additive set functions
defined on 3. Agsume that . is bounded and 7 is finite and
absolutely continuous with respect to #. (A word of warning
is in order here. The statement “; is absolutely continuous
with respect to .” is often interpreted as “u(F) = 0 implies
7(E) = 0”. This is not the meaning used here. Our definition is
“for every ¢ > 0 there is a 6 > 0 such that | «(F)| < ¢ implies
|7(E)| < &” Unless u is bounded and countably additive, the
two definitions are not equivalent.)

TueoreM 1. There exists a sequence {f,} of y-simple func-
tions on S, such that

1. tim | fi(s)ds) = 1B,
uniformly for Fe X
2. Jim {160 = futs) 1o d9) = 0,

where v(x) is the total variation of 4.

Theorem 1 is established by a pure existence proof, and
gives no indication of how to find f,. A more constructive
result is given below.

A partition of S is a finite collection of sets E; belonging
to 2, such that S is the disjoint union of the E;, and such
that u(E) #0,i=1, ---,n.

The set &7 of partitions may be directed by refinement,
that is, by the following partial order: P, < P, if for every
E¢c P, there exist F, -+, F,€ P, (r may depend on E') such
that E and Ui, F; differ by a z-null set.

If P is a partition of S, define the u-simple function f7
to be >irepr (F(E)/ W E))ys, where 3, is the characteristic fune-
tion of E.

THEOREM 2. If u is positive, then
lim | fusds) = (),
PEZ g

uniformly for Ec Y, where <7 is directed as explained above.

(The notation throughout is essentially that of [2].) For positive
Y, Theorem 1 reduces to Bochner’s Radon-Nikodym Theorem. See [1].

35



36 CHARLES FEFFERMAN

Proofs of the theorems. Theorem 2 follows with little difficulty
from Theorem 1. Therefore, for the sake of clarity, we shall first
establish Theorem 2, assuming Theorem 1 to be valid.

Proof of Theorem 2. The result is proved by translating the
situation into an abstract problem on the convergence of operators
in a Banach space.

Throughout the proof, we assume v bounded. This assumption
is justified by Lemma 1 in the proof of Theorem 1, which shows that
boundedness of v follows from the hypothesis of Theorem 2.

Let X be the vector space of bounded pg-absolutely continuous
set functions on X with the norm |v| = v(v, S). Define continuous
linear operators 7, on X, Pe.Z”, by the relation

(TN (E) = | fHs)u(ds) .

Theorem 2 asserts that for each ve X, limpes To(v) = v. In order to
show this, it suffices to prove

(1) that limpes Tp(v) = v for all v in a dense subset of v;

(2) that the operators T, Pe.7” are equicontinuous on the unit
ball of X; that is, | T»|, Pe .&” are uniformly bounded.

To establish (1), we select as our dense subset the set of all
ve X of the form

WE) = | F@)pds),

E

where f is a p-simple function on S. That this subset is dense
follows from Theorem 1. We must show that if v is of the above
form, then limpe T(7) = v. But this is immediate from the follow-
ing argument: Let

1W8) = | Femds),
E e, where (since f is a p-simple function), we can write
N
f = 1221 a’b XE',,; y

with the E; pairwise disjoint, and S = Y, E;. Then {E}} is a parti-
tion of S. By trivial algebra,

To(r) = | fis)puds) =

whenever P is a refinement of {£}, that is, {E;} > P. This proves (1).
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To establish (2), we shall prove that |T-| <1, Pe.&?, i.e.,
| Tev| =< |7|,7e X, Pe.&?. Any ve X may be separated into its real
and complex parts, and so it suffices to show that | T»v| < |v| when
v is real. Since any real v is the difference of its positive and nega-
tive parts, v = (v4) — (v_), and since |v.| + |v_| = |v]| (by definition
of the norm in X), it suffices to show that | T»v| < v when v is posi-
tive, and Pe .. Now we must show that if v is positive, and Pe¢ .27,
then | Tpv | < |v| = (v, S) = ¥(S). By inspection of the definition of
T», we see that since p and v are positive, T,v is positive. So we
must show that (THYNS) < ¥(S), when v is positive. By trivial
algebra, it follows from the definition of T, that (Tp7)(S) = ¥(S).

This proves Theorem 2.

We can now proceed to the most important part of the paper.

Proof of Theorem 1. The plan of attack is as follows: First
we prove the theorem for the case in which y is positive, and there
is an N > 0 such that |v(E)| = Nu(E), Ec€ 2. Next, we remove the
restriction on v, and show that the theorem holds for all positive .
Finally, we extend to the general case of a complex p, using the
approach of [2].

Let us establish a simplified notation. If +v is any bounded
p-absolutely continuous set function on ¥, and f is a p-simple funec-
tion on S, define the p-absolutely continuous finitely additive set funec-
tion fy by the relation

(FNE) = | f(syr(ds)

This operation makes X, the space defined earlier, a module over the
set of p-simple functions on S.

This notation allows us to reformulate Theorem 1 in terms of
the space X. Conclusion (1) states that lim, . f,2# =7 in X, that
is, lim, .. v(v — f.tt, S) = 0. Conclusion (2) asserts that the sequence
{futt} is Cauchy in the X-norm. Since convergent sequence in X are
Cauchy, conclusion (2) follows from conclusion (1).

The fact that lim, . v(v — f,z¢, S) = 0 if and only if conclusion (1)
of the theorem holds, should be noted carefully, since this is the form
in which the theorem will be proved.

We now present the series of lemmas which establishes Theorem 1.

LemMmA 1. Let p and v be finite real-valued finitely additive set
Sfunctions on . Suppose that pt is bounded and positive, and v is
p-absolutely continuous. Then v is bounded.
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Proof. Suppose not. Then 7 = {EeX|v(v,E)= + o} is non-
empty. Let M = inf{(E)|Ee _}. Pick a 6>0 so small that u(&) <o
implies |v(E) | < 1. Pick an E,e _# such that @(E,) < M + (9/2). Since
E,e #,v(v,E)= +o. On the other hand, we shall show that for
every FeX FS E, |v(F)| + |v(E, — F)| < | (&) | + 2. This will be
a contradiction, since, v being real,

o(r, ) = Sup (W(F) | + | 1B, — F)) < [AEB) | +2 < +eo .

F<E,
So to establish Lemma 1, we need only show that if FelJ,
F< E, then |v(F)|+ |vE,— F)|<|vE)|+ 2. Pick an FelX,
Fc E, If we had p(F') = 9, u(E, — F') = 9, then by finite additivity,
W(F) = (B, — (B, — F)
0 0
—) - — < ~—)—90
<(M+ 2) H(E, F)_<M+ 2) <M

WE, — F)y = p(Ey) — u(F)
<<M+%>—#(F)§<M+%>—5<M

so that, by definition of M, F¢ _~ and E — F¢ _#. But then,
(v, F) < 4+ and v(v, E, — F) < + 0, so that »(v, E;) < + o, con-
tradicting E,e # .

Therefore, if F'e 3, F'< E,, then either p#(F') < ¢ or u(E, — F') < 6.
Suppose that p(F') < 6. Then by definition of 4, [¥(F)| < 1. On the
other hand,

|7 — )| = [7(Eo) — v(F) |
= [Y(E) |+ [7(F)] = [7(E) |+ 1.

Therefore,
[ HE) |+ [7(E — F)| = [v(E) |+ 2.
Similar arguments show that if p(E, — F') < 9, then
[ YE) |+ [7(E — F) = |[7(E) | + 2.

So whenever Fel, FS E, |7(F)| + |7(&, — F)| < |v(&,)]| + 2.

LEMMA 2. Let ¢ be a positive bounded finitely additive set
function on X, and let v be a real-valued finite, finitely additive
set fumction on 2. If there is an N > 0 such that |v(E)| < NuE)
for all EcX, then there exists a sequence {f,} of p-simple functions
on S, such that
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W(8) = lim | £.(s)puds)
uniformly for EelX.

Proof. Let &~ be the space of p-simple functions on S, with
the norm

71= /] s,

and let &7 be the completion of &#. &7 is obviously a Hilbert space.
For example, if x is countably additive, then <~ is just the space L..
Define a linear functional £ on & as follows:

oFf = sz(s)'r(ds) .
To check that ¢ is continuous, observe that
(212 | 176 00, ds) < N | £6) | pds) = N1 £ 111

where 1 is the p-simple function which maps all of S to 1. (The last
inequality is just Holder’s inequality with g = 1.)

Since ¢ is continuous on &, it has a continuous extension
to all of .&7. Since ¢ is a continuous linear functional on a Hilbert
space, there is some xe_ & such that for all ye &7, 2y = x-y.
Since &~ is dense in &7, there exists a sequence {f,} of elements of
& (i.e., a sequence of p-simple functions on S) such that lim,_.. f, = @
in <. Therefore, for each positive M, lim,_.. f,-y = <f uniformly
for y in the M-ball of &~.

For Ecl, |ys| in &7 is just

et = /], tsto) )

. ]/SEl;z(ds) = VuE) < VIRS) .

Therefore, {¥s|E €2} consists entirely of elements of the M-ball of
&7 where M = 1/p(S). By the result of the last paragraph,

lim f, % = Oz »

n-—o0

uniformly for E€X. Recalling the definitions of ~” and of the dot
product in &, this equation becomes
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lim Lﬁ(sm(s)p(ds) - Lm(s)v(ds) ,

n—00

uniformly for Ee X, i.e.

lim | £,(s) p(ds) = 7(E)

uniformly for EeJX.

The next step in the proof of Theorem 1 is to extend Lemma 2
to the case in which we no longer have |v(E)| < Nu(E). It becomes
easier to see how this extension may be accomplished, if we rephrase
the conclusion that we are trying to prove. We are trying to show
that if g is as in Lemma 2, then {fi|f a p-simple function on S}
is dense in X. By Lemma 2, {fur|f a p-simple function on S} is
dense in X, = {ye X|aIN >05VEel, |v(E)| = Nu(E)}. So we want
to show that X, is dense in X, i.e., for every p-absolutely continuous
finite v, there is a sequence v, of set functions of X, such that
1Y AE) ) £ mqEY, Ec X, and tm,_ .y —v,, 8) =0. We find {v,} as
follows:

DEFINITION. Let v, and 7, be finite positive finitely additive set
functions on Y. Define the set function v, A 7. on ¥ by the relation

(2 A Y )NE) = ;Iéfs [V(F) + 7(E — F)] .

F<E

Observations.

1. v A7 is finitely additive. This is easy, and the proof is
contained in the proof of Theorem III 7.3 in [2]. Therefore the proof
will not be included here.

2. AT v and A TS .

3, If v, < v, then v, A =7 A Vs

LEMMA 3. Let p be a positive bounded finitely additive set func-
tion on 3, and let v be a positive bounded finitely additive p-absolutely
continuous set function on 3. Let v, = (ny) N7. Then

limo(y — v, S)=0.

f—rco

Proof. 0 <7, < Y.1=7, so that if lim,_.. 7.(S) =¥(S), the lemma
is proved. Let ¢ > 0 be given. By hypothesis, there is a 6 >0 such
that if p(E) <9, EecX, then v(E)<e Let N =7(S)/d. Consider
any Fel.

Case 1. p((F) > 5. Then Nu(F) =z %(S), so that
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NuF) 4+ %S — F)=(S).

Case 2. p(F) < d. Then v(F')<¢, so that v(S — F) = ¥(S) — ¢,
and so

Nu(F)y+ (S —F)=%S) —e.
In either case, Np(F') + (S — F') = v(S) —e. So
1(S) = ;QE(N#(F) + 7S — F)) =z 7(S) —¢.

Therefore, lim,_.. 7.(S) = 7(S).

LEMMA 4. Let p be a positive bounded finitely additive set
Sfunction on 3, and let v be a complex-valued finite p-absolutely
continuous finitely additive set function on 2. Then there exists a
sequence {f,} of p-simple functions on S, such that

limv(y — fop, S) = 0.

n—oco

Proof. v can be separated into its real and imaginary parts, so
that it suffices to consider v real. Any real v may be separated into
its positive and negative parts, v = v, —v_. Lemma 1 assures us
that v, and v_ are bounded. So it suffices to consider < positive.
For » > 0, pick N, so large that

vy — (Nopt A7), S) < = .
2n

This is possible by Lemma 3. By Lemma 2, and by the fact that
| (Nt ANV)E)| = N,p((E), Ec X, there is an f,, a p-simple function
on S, such that

V(N AN Y) — fut, S) < 1
2n

Then
vy — futts S) S (v — Nt A7), S) + o(Noupt A7) — furt, S)
1 1 1
o T T w

so that lim,_.. v(v — f.z, S) = 0.

We have now completed the second step in the proof of Theorem 1,
namely, we have proved the theorem for the case ¢ = 0. The final
step is to establish the theorem in the complex case. To accomplish
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this, we carry over the procedure of [2], which is wvalid for the
countably additive case. In [2], the argument (to prove the usual
Radon-Nikodym Theorem in the complex case, given its validity in
the case p = 0) is roughly the following: Let x and v be bounded
measures on the sigma-field Y, and suppose that v is p-absolutely
continuous. Then v and p are both wv(y, -)-absolutely continuous. So
there are integrable functions g and & on S such that

WE) = SEh(s)v(y, ds)

and
IWE) = | gl ds),
EcX. It is then proved that

o(y, B) = SE-}L(LS)—#(OZS) )

EeZ, and from this it is shown that

_{ 96)
WE) = SEdes) :

In order to apply this type of argument to the present situation,
we need two estimates:

LEMMA 5. Let p be any bounded complex-valued finitely additive
set function on X, and let v denote the set function v(y, -). Then
there exists a sequence {f,} of p-simple functions on S, such that
| fu(s)] = 1/2 for n > 0 and se S, and such that

limv(ze — f,u,S) =0.

n—0co

Proof. By Lemma 2, there is a sequence {g,} of pu-simple func-
tions on S, such that lim,_ . v»(# — g,u, S) = 0. Then

lim [v(p, B) — v(g.u, E)| =0
uniformly in EeX. Now
w(ga, B) = | 9.6)|v(p, ds)

so that
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|o(et, B) = o(g,0, B) | = [0l B) = | [0,6) | o(t, do)|
= |1, = 19.6) Dot ds)|
Therefore,
lim | (1| 9.() Do(s, ds) = 0
uniformly for Ee . Hence,
lim | 1= 1g.(6)|] o(sz, ds) = 0.
If |g.(s)| < 1/2, then |1 — |g,(s)|| > 1/2. Therefore, setting
S, ={seS|la@ <2},
So(m {ses|ia@ < 1) = S%l 1 — 19.() || v(zz, ds)

= 11 10.01]vp ds) .

So lim,... v(y, S,) = 0. Let x, be the characteristic function of S,.
Then

lim | |7,(5) o, ds) = 0.

Define f, =g, + %.. By checking the two cases |g,(s)| = 1/2 and
[g.(s)| < 1/2, we see that [f.(s)|=1/2,n > 0,scS. Now

,U(f'nu — 9.U, S) = ’U((fn - gn)uy S)
= o, 8) = | 12.06) [ 0(p, ds)

Since lim,_ . v(¢t — g,u, S) = 0, we have lim, . v(¢t — f,u, S) = 0.

LEMMA 6. Let p and w be as in the previous lemma. Then there
exists a sequence {g,} of p-simple functions on S, such that

limv(u — g,pt, S) =0.

Proof. Let {f,} be a sequence of p-simple functions on S, as in
the conclusion of the previous lemma, and define g,(s) = 1/f.(s)-g is
well-defined, since f,(s) = 0.

Now g,/ = g,.fu + gl — foul = w + g,[p — fau]. Since
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1
| fu(s) |

so that v(g,[p — faul, S) < 2v(p — f,u, S). But

=2,

Ifn(S)Iz%, 1 g.(5) | =

limo(pe — f,u, S)=0.

n—rco

So
lim v(g,pt — u, S) = limv(g,[pt — fou], S) =0.

n—oo

Proof of Theorem 1. By Lemma 4 there is a sequence {h,} of
p-simple functions on S, such that lim,_ . v(v — h,u, S) = 0, where
u, as usual, stands for wv(y, -). By Lemma 6, there is a sequence
{9.} of p-simple functions on S such that lim, . v(w — g,z, S) = 0.
Now

Y=l + (Y — lpt) = hugypt + ha(w — gypr) + (v — hu) .

Given n > 0, pick m, so large that v(v — h, u, S) < 1/2n. Since b,
is p-simple, we can pick M, > 0 such that |2, (s)| < M,,seS. Pick
N, so large that v(u — g, rt, S) < 1/2nM,. Then it follows that

77(7 - hmng\n#y S) é v(hmn(u - gNn/‘t)v S) + ’U('Y - hmnu’y S)
é an(u’ - gN,,f#v S) + ?)(7 - hmnus S)
1 1 1 n 1 1

<M,- .
2nM, 2n 2n 2n n

So, if we define f,=h, gy, then we have (v — f,u, S) < 1/n.
Therefore,

limv(y — fope, S) =0.

N —oo

Some examples. This section exhibits counterexamples to show
that the principal hypothesis, boundedness of y, is needed to prove
Theorem 1.

ExamMpLE 1. Let S be the set of natural numbers, and let 3 be
the set of all subsets of S. Define a countably additive set function
¢ by p(n}) =1, and let v be any finitely additive set function on ¥
that is not countably additive. If wv(y, E) < 1/2, then E must be
empty, so that v(E) =0. Therefore v is p-absolutely continuous,
But if v were representable as in Theorem 1, then we could show
that v is countably additive.
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ExaMPLE 2. Let S and Y be as in Example 1. Define finite set
functions g and v finitely additive on X by setting p({n}) =1,
v({n}) = n, and extending by a Zorn’s lemma argument. g and v are
finite, but not bounded. By the reasoning of Example 1, v is p-
absolutely continuous. If v were representable in the form of
Theorem 1, then we could write v = v, + v, where v(7, S) <1 and
[7(E)| < M |pE)|, EcS. In fact, the above decomposition of v is
impossible.
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