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C A L V I N T. L O N G

Let C be a set of integers. Two subsets A and B of C

are said to be complementing subsets of C in case every ceC

is uniquely represented in the sum

C = A + B = {x\x = a + b,aeA,beB}.

In this paper we characterize all pairs A, B of complementing
subsets of

2V* = {0,1, - , n - l l

for every positive integer n and show some interesting con-
nections between these pairs and pairs of complementing sub-
sets of the set N of all nonnegative integers and the set I of
all integers. We also show that the number C(n) of comple-
menting subsets of Nn is the same as the number of ordered
nontrivial factorizations of n and that

2C(n) = Σ C(d).
d\n

The structure of complementing pairs A and B has been studied
by de Bruijn [1], [2], [3] for the cases C = I and C = N and by A. M.
Vaidya [7] who reproduced a fundamental result of de Bruijn for the
latter case. In case C = N it is easy to see that A Π B = {0} and
that 1 e A U B. Moreover, if we agree that 1 e A, it follows from the
work of de Bruijn, that, except in the trivial case A = N, B = {0},
A and B are infinite complementing subsets of N if and only if there
exists an infinite sequence of integers {m<}ίί:1 with m< ̂  2 for all i,
such that A and B are the sets of all finite sums of the form

α = Σ χ2iM2i,

b = Σ ^ AΣ
respectively where 0 <g α̂  < m<+1 for i >̂ 0 and where j|fo = 1 and
<M< = Πj =i m i f° r i ^ 1. In the remaining case, when just one of A
and B is infinite, the same result holds except that the sequence {mj
is of finite length r and that xr ^ 0. Similar results can also be
obtained in the case of complementing Λ-tuples of subsets of N for
k>2.

The case C = I is much more difficult and, while sufficient condi-
tions are easily given, necessary and sufficient conditions that a pair
A, B be complementing subsets of / are not known. As an example
of sufficient conditions, we note that if A and B are as in (1) above,
then A and —B form a pair of complementing subsets of I. This is
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an immediate consequence of the fact that every integer n can be
represented uniquely in the form

(2) n = ±(-l)%Mi

with Xi and Mi as in (1). Incidentally, if B is finite, it is not difficult
to see that there exists an integer r0 <̂  0 such that A and —B form
a pair of complementing subsets of the set

R = {r I r 61, r ;> r0}.

And if A is finite, there exists an integer sQ > 0 such that A and
— B are complementing subsets of the set

S — {s I s e I, s ̂  s0}

2* Complementing sets of order n. We now investigate the
structure of pairs A, B of complementing subsets of the set

for integral values of n ^ 1. Such a pair of sets will be called com-
plementing sets of order n and we will write (A, B) ~ Nn.

In case n = 1, we have only the trivial pair A = B = {0}. For
w > 1, it is easy to see that A Π B = {0} and that l e i U ΰ . We
choose our notation so that leA and, if m is the least positive element
in B, then we also have that Nm c A and that none of m + 1, m + 2,
• , 2m — 1 appear in either A or 5 . If B does not contain positive
elements, we have only the trivial pair A = Nn, B = {0}.

For the remainder of the paper, we restrict our attention to the
case n > 1 and we use the notation mS to denote the set of all
multiples of elements of a set S by an integer m.

LEMMA 1. Let A, B, C, and D be subsets of Nn such that, for a
fixed integer m ^ 2,

A = mC + Nm and B = mD.

Then (A, B) ~ Nmp if and only if (C, D) ~ Np where p ^ l .

Proof. Suppose first that (C, D) — Np. Then, for any s e Nmp,
there exist integers qeNp and r e Nm such that s = mq + r. Since
(C, J5) — iVp, there exist c e C and deD such that q = c + d. But
then

5 = m(c + d) -+ r = (me + r) + mώ = α + b

with α = mc + r e i and 6 = mdeJB. Moreover, if this representation
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is not unique, there exist a' ei,ί) 'G B, c' eC, d' e D, and rr e Nm such
that

s = a! + V = (me' + r') + md'.

But then r = r' and

and this violates the condition that g be uniquely represented in the
sum C + D.

Conversely, suppose that (A, B) ~ Nmp. Then, for s e Np, there
exist a e A, b e B, c e C, d e D, and reNm such that

sm = α + 6 = (me + r) + md.

But this implies that r = 0 and that s = c + d. Also, if this repre-
sentation of s in C + D is not unique, there exist c'eC and d' eD
such that s = c' + d'. But then

sm — cm + dm — c'm + d'm

and this violates the condition that sm be uniquely represented in
A + B.

The next lemma is an adaptation of a key result of de Bruijn
[2, p. 16].

LEMMA 2. // (A, B) — Nn, then there exist an integer m Ξ> 2
m I ^ and a complementing pair A', Br of order n/m, with le A'

if B Φ {0}, such that

( 3 ) A = mB' + Nm and B = mA'.

Proof. If B — {0}, then A = Nn and the desired result follows
with A' = B' = {0} and m = n. If B Φ {0}, let m be the least positive
integer in B. Since l e i and A fl 5 = {0}, it follows that m >̂ 2.
Determine the integer Λ, such that

/ιm ^ ^ < (h + l)m.

Now the induction of de Bruijn's proof holds for all nonnegative
integers less than h and shows that all elements of B less than hm
are multiples of m and that, for each k with 0 <£ k ^ Λ — 1, the set

{ftm, km + 1, , km + m — 1}

is either a subset of A or is disjoint from A. This implies that A'
and B' exist such that (1) holds and l e A ' provided we are able to
show that hm + rgAijB for every integer r ^ 0. Contrariwise,
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suppose that hm + reA. Then hm + r + m e A + B = Nn, and this
is impossible since hm + r + m ^ hm + m>n. Similarly, if hm + reB,
then (m — 1) + hm + reA + B and we have the same contradiction.
Thus (3) holds and it follows that m divides n and, by Lemma 1,
that (A', B') ~ Nnlm.

The following theorem, which characterizes all complementing
pairs of order n > 1, now follows by repeated application of Lemma 2.

THEOREM 1. Sets Ax and Bx form a complementing pair of order
n ^ 2 if and only if there exists a sequence {m^r

i=ι of integers not
less than two such that

r

and such that Ax and Bx are the sets of all finite sums of the form

a = r Σ 2 x2iM2i and b = " ^ Xu+iM2i+1

respectively with Mo = 1, Mi+1 — Πjίi = w, and 0 < xt < m<+1 /or 0 ^
i < r. If r = 1, we interpret the notation to mean that Bλ — {0}.

It follows from Theorem 1 that there exists a one to one corre-
spondence between the set ^ of all pairs of complementing sets of
order n > 1 and the set of all ordered finite sequences {mj with m{ Ξ> 2
such that ΐlmt = n. Thus, if C(n) denotes the number of elements
of <ĝ Λ, then C(n) is equal to the number F(n) of ordered nontrivial
factorizations of n. Curiously, as shown by P. A. MacMahon [4; p.
108], F(n) is in turn equal to the number of perfect partitions of
n — 1. This last result is also listed by Riordan [6; pp. 123-4], In
a second paper, MacMahon [5; pp. 843-4] shows that

j - i -1\- v v\_iWΛ v (ah + ° ~ % " Λ
3=i i=o \^/Λ=l\ at. /

where g = Σί=i ^^ a n ( i ^ — Πl=i 2>ί* is the canonical representation of
n. However, if one actually wants the values of C(n), they are much
more easily computed using the result of the following theorem:

THEOREM 2. If n > 1 is an integer, then

C(n) = -ί Σ C(d) = 2 Σ μ(d)C(n/d)

where μ denotes the Mobius function.
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Proof. It follows from Lemma 2 that to each of the C(n) distinct
complementing pairs A, B of order n there corresponds a unique com-
plementing pair A', Bf of order d where d | n and 1 ̂  d < n. Hence,

C(n)^ Σ C(d).
d\n,d<n

Moreover, from each of the C(d) distinct complementing pairs C, D of
order d, with 1 ̂  d < n and l e ΰ if cϊ =£ 1, can be formed precisely
one pair A, B of complementing sets of order ώg = % by the method
of Lemma 1. Since the new pairs formed in this way are clearly
distinct, it follows that

C(n) ^ Σ C(d).
d\n,d<n

Thus, equality holds and this implies that

Σ
2 d\n

as claimed. The other equality is an immediate consequence of the
Mobius inversion formula.

Except for Theorem 2, the preceding theorems reveal a striking
parallel between the structure of complementing subsets of N and the
structure of complementing pairs of order n. The next theorem ex-
hibits an additional interesting connecting between these two classes
of pairs. Also, it is clear that a similar theorem holds giving sufficient
conditions that A and B form a pair of complementing subsets of I.

THEOREM 3. Let {m*}^ and {ikfĵ o be as defined in (1) above and
let (d, Di) ~ Nm.+l for i ^ 0. If A and B are the sets of all finite
sums of the form

a = Σ CiMi and b = Σ ̂ Mi

respectively with c< e C< and dt e Dt for i >̂ 0, then (A, B) ~ N.

Proof. Let n be any nonnegative integer. Then n can be re-
presented uniquely in the form

n = Σ eMi
i=0

with β< e Nwί+1 for all i. Since (C<, A) ~ Nm , there exist c< e C{ and
di e Dt such that β4 = c< + cί̂  uniquely. Therefore,

Σ ( ^)
i=0

= Σ cM + Σ
<=o * = o

= α + δ
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with aeA and beB. If this representation of n in A + B is not
unique, there exist a'eA and 6'eJS such that

n = α' + V

where

α' = Σ <#lίi and 6' = Σ dJAf*
•=0 i=0

with c'i e Ci and c£J e A for each i. But then

±(c'i
t=0

and cj + dieNm.+1 since (C<, A) ~ ^m ί+1 for all i. Since representa-
tions of n in this form are unique, it follows that r = s and that

Ci + d< = c + d'i

for each i. And this violates the condition that (Cif A) ^ ^wί+1

Thus, the representation is unique and (A, B) ~ N as claimed.
Note that if r is fixed and 0 ^ i < r in the sums defining A and

5 in the preceding theorem, then we conclude in the same way that
(A, B) ~ Nnr.

The author acknowledges his indebtedness to Professors Ivan
Niven and E. A. Maier who made several helpful suggestions con-
cerning the writing of this paper.
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