# Pacific Journal of Mathematics

ON *w*\*-SEQUENTIAL CONVERGENCE AND QUASI-REFLEXIVITY

RALPH DAVID MCWILLIAMS

Vol. 23, No. 1

March 1967

## ON *w*\*-SEQUENTIAL CONVERGENCE AND QUASI-REFLEXIVITY

#### R. D. MCWILLIAMS

This paper characterizes quasi-reflexive Banach spaces in terms of certain properties of the  $w^*$ -sequential closure of subspaces. A real Banach space X is quasi-reflexive of order n, where n is a nonnegative integer, if and only if the canonical image  $J_X X$  of X has algebraic codimension n in the second dual space  $X^{**}$ . The space X will be said to have property  $P_n$  if and only if every norm-closed subspace S of  $X^*$  has codimension  $\leq n$  in its  $w^*$ -sequential closure  $K_{\mathbf{X}}(S)$ . By use of a theorem of Singer it is proved that X is quasireflexive of order  $\leq n$  if and only if every norm-closed separable subspace of X has property  $P_n$ . A certain parameter  $Q^{(n)}(X)$  is shown to have value 1 if X has property  $P_n$  and to be infinite if X does not have  $P_n$ . The space X has  $P_0$  if and only if w-sequential convergence and  $w^*$ -sequential convergence coincide in  $X^*$ . These results generalize a theorem of Fleming, Retherford, and the author.

2. If X is a real Banach space, S a subspace of  $X^*$ , and  $K_x(S)$  the  $w^*$ -sequential closure of S in  $X^*$ , then  $K_x(S)$  is a Banach space under the norm  $\varphi_S$  defined by

$$\varphi_{S}(f) = \inf \left\{ \sup_{n \in \omega} ||f_{n}|| : \{f_{n}\} \subset S, f_{n} \xrightarrow{w^{*}} f \right\}$$

for  $f \in K_x(S)$  [5]. If  $S \subseteq T \subseteq K_x(S)$ , let

$$C_{x}(S, T) = \sup \left\{ \varphi_{s}(f) \colon f \in T, \mid\mid f \mid\mid \leq 1 \right\}$$
.

Thus,  $K_x(S)$  is norm-closed in  $(X^*, || \quad ||)$  if and only if  $C_x(S, K_x(S))$  is finite [5]. For each integer  $n \ge 0$  let  $\mathscr{T}_n(S)$  be the family of all subspaces T of  $X^*$  such that  $S \subseteq T \subseteq K_x(S)$  and such that  $K_x(S)$  is the algebraic direct sum of T and a subspace of dimension  $\le n$ . Let

$$C_{x}^{(n)}(S) = \inf \left\{ C_{x}(S, T) : T \in \mathscr{T}_{n}(S) \right\},$$

and let

$$Q^{(n)}(X) = \sup \left\{ C_X^{(n)}(S) : S \text{ a subspace of } X^* \right\}$$

It will be said that X has property  $P_n$  if and only if  $S \in \mathscr{T}_n(S)$  for every norm-closed subspace S of  $(X^*, || ||)$ .

3. THEOREM 1. Let X be a real Banach space and n a non-

negative integer. If X has property  $P_n$ , then  $Q^{(n)}(X) = 1$ . If X does not have property  $P_n$ , then  $Q^{(n)}(X) = \infty$ .

*Proof.* If X has property  $P_n$  and  $S_1$  is a norm-closed subspace of  $X^*$ , then  $S_1 \in \mathscr{T}_n(S_1)$  and hence  $C_X^{(n)}(S_1) = 1$ . If S is an arbitrary subspace of  $X^*$  and  $S_1$  the norm-closure of S, then  $C_X^{(n)}(S) = C_X^{(n)}(S_1)$ and therefore  $Q^{(n)}(X) = 1$ .

If X does not have property  $P_n$ , then  $X^*$  has a norm-closed subspace S such that  $K_x(S)$  contains an (n + 1)-dimensional subspace V such that  $S \cap V = \{0\}$ . Now V has a basis  $\{f_1, \dots, f_{n+1}\}$  of vectors with  $||f_i|| = 1$ , and there exist  $F_1, \dots, F_{n+1} \in X^{**}$  such that for each  $j \in \{1, \dots, n+1\}$ ,  $F_j(f) = 0$  for every  $f \in S$  and  $F_j(f_i) = \delta_{ij}$  for each  $i \in \{1, \dots, n+1\}$  [7, p. 186]. Let  $\alpha = \max\{||F_j|| : 1 \leq j \leq n+1\}$ . Further, there exist vectors  $x_1, \dots, x_{n+1} \in X$  such that  $f_i(x_j) = \delta_{ij}$  for  $1 \leq i, j \leq n+1$  [7, p. 138].

Since  $f_1, \dots, f_{n+1} \in K_x(S)$ , the restrictions of  $J_x x_1, \dots, J_x x_{n+1}$  to S must be linearly independent on S, and hence for each

$$i \in \{1, \cdots, n+1\}$$

there exists  $g_i \in S$  such that  $g_i(x_j) = \delta_{ij}$  for each j [7, p. 138]. Now for each  $i = 1, \dots, n+1$  there is a sequence  $\{p_{ih}\} \subset S$  such that  $p_{ih} \xrightarrow{w^*}{h} f_i$ . The sequence  $\{p_{ih}\}$  may be chosen so that

$$|p_{ih}(x_j) - \delta_{ij}| < rac{2^{-h}}{(n+1)\,||\,g_j\,||}$$

for each j. If we let  $f_{ih} = p_{ih} + \sum_{j=1}^{n+1} [\delta_{ij} - p_{ih}(x_j)]g_j$ , then  $f_{ih}(x_j) = \delta_{ij}$ for all i, h, j, and  $||f_{ih} - p_{ih}|| < 2^{-h}$ , so that  $f_{ih} \xrightarrow{w^*}{h} f_i$ ; clearly  $\{f_{ih}\} \subset S$ .

For each  $i \in \{1, \dots, n+1\}$  and  $h \in \omega$ , let  $g_{ih} = f_{ih} - f_i$ . Thus  $g_{ih}(x_j) = 0$  and  $F_j(g_{ih}) = -\delta_{ij}$  for all i, h, j, and  $g_{ih} \xrightarrow{w^*}{h} 0$  for each i. Generalizing a method of Fleming [3], for each positive number N we let  $R_N$  be the linear span and  $S_N$  the norm-closed linear span of  $\{f_{ih} + Ng_{ih} : 1 \leq i \leq n+1; h \in \omega\}$ . Note that for each

$$i \in \{1, \dots, n+1\}, f_{ih} + Ng_{ih} \xrightarrow{w^*}{h} f_i;$$

thus  $V \subseteq K_x(R_N)$ . Now let f be a nonzero element of V and  $\{v_m\}$  a sequence in  $R_N$  such that  $v_m \xrightarrow{w^*} f$ . Clearly f has the form

$$f = \sum_{i=1}^{n+1} lpha_i f_i$$

and each  $v_m$  has the form

$$v_m = \sum_{i=1}^{n+1} \sum_{h=1}^{h_{mi}} lpha_{mih}(f_{ih} + Ng_{ih})$$
 .

For every  $j \in \{1, \dots, n+1\}$ ,

$$lpha_j = f(x_j) = \lim_m v_m(x_j) = \lim_m \sum_{h=1}^{h_m j} lpha_{mjh}$$
,

and since  $F_{j}(f_{ih} + Ng_{ih}) = -N\delta_{ij}$ , it follows that

$$F_j(v_m) = -N \sum_{h=1}^{h_{mj}} lpha_{mjh}$$
 .

Thus  $\lim_{m} F_{j}(v_{m})$  exists and is equal to  $-N\alpha_{j}$ . Now

$$||v_m|| \ge rac{|F_j(v_m)|}{||F_j||}$$
 ,

and hence  $\lim \inf_m ||v_m|| \ge N |\alpha_j|/||F_j|| \ge N |\alpha_j|/\alpha$ . Since j is arbitrary,  $\lim \inf_m ||v_m|| \ge (N/\alpha) \max |\alpha_j|$ . From the definition of  $\varphi_{S_N}$ , it follows that  $\varphi_{R_N}(f) = \varphi_{R_N}(f) \ge N/\alpha \max_j |\alpha_j| \ge N ||f||/\alpha(n+1)$ . If  $T \in \mathscr{T}_n(S_N)$ , then T must contain some nonzero  $f \in V$  since V is (n+1)-dimensional, and hence  $C_x(S_N, T) \ge N/\alpha(n+1)$ . Therefore  $C_x^{(n)}(S_N) \ge N/\alpha(n+1)$ . Since N is arbitrary and  $\alpha(n+1)$  is independent of N, it follows that  $Q^{(n)}(X) = +\infty$ .

THEOREM 2. Let X be a real Banach space and n a nonnegative integer. If X is quasi-reflexive of order  $\leq n$ , then X has property  $P_n$ . If X is separable and has property  $P_n$ , then X is quasi-reflexive of order  $\leq n$ .

*Proof.* If X is quasi-reflexive of order  $m \leq n$  and S is a normclosed subspace of  $X^*$ , then it can be seen from the proofs of Theorems 5 and 6 of [4] that  $K_x(S)$  is the direct sum of S with a subspace of  $X^*$  of dimension  $\leq m$ . Hence  $S \in \mathcal{T}_n(S)$ , and consequently X has property  $P_n$ .

On the other hand, let X be separable and suppose that X has property  $P_n$ . Let  $F_1, \dots, F_{n+1}$  be linearly independent elements of  $X^{**}$  and  $S = \bigcap_{i=1}^{n+1} \{f \in X^* : F_i(f) = 0\}$ . Thus S is a norm-closed subspace of  $X^*$  of codimension n + 1, and hence, by property  $P_n, K_x(S)$ has codimension m for some  $m \in \{1, \dots, n+1\}$ . There exists a subspace U of  $X^*$  of codimension 1 such that  $K_x(S) \subseteq U$ . Thus U = $S \oplus V$  for some subspace V of  $X^*$  of dimension n. Now  $U = K_x(U)$ . Indeed, if  $\{g_i\} \subset U$  and  $g_i \xrightarrow{w^*} g$ , and if P is the projection of U onto

115

V along S, then as in the proof of Theorem 5 of [4], P is bounded and  $\{g_i\}$  is bounded, so that  $\{Pg_i\}$  is bounded and hence has a subsequence  $\{Pg_{ij}\}$  which converges inner m to some v in the finite-dimensional subspace V. It follows that  $g_{ij} - Pg_{ij} \xrightarrow{w^*} g - v \in K_x(S)$  and hence that  $g \in K_x(S) + V = U$ .

Since  $U = K_x(U)$  and X is separable, it follows, by an argument involving the *bw*<sup>\*</sup>-topology of  $X^*$  [3], that U is *w*<sup>\*</sup>-closed. If n = 0, let  $F = F_1$ . If n > 0, there exist linearly independent vectors  $f_1, \dots, f_n$  spanning V, and there exist scalars  $\alpha_1, \dots, \alpha_{n+1}$ , not all of which are zero, such that  $\sum_{i=1}^{n+1} \alpha_i F_i(f_j) = 0$  for  $1 \leq j \leq n$ ; indeed, the (n + 1) vectors

$$egin{bmatrix} F_i(f_1)\ dots\ P_i(f_n) \end{bmatrix} & (i=1,\,\cdots,\,n+1) \ F_i(f_n) \end{bmatrix}$$

in *n*-dimensional Euclidean space must be linearly dependent. Let  $F = \sum_{i=1}^{n+1} \alpha_i F_i$ . Thus, for  $n \ge 0$ ,  $F \ne 0$  and  $U = \{f \in X^* : F(f) = 0\}$ . Since U is w\*-closed, F is w\*-continuous on X\* [7, p. 139], and hence  $F \in J_x X$ . Thus every (n + 1)-dimensional subspace of X\*\* contains a nonzero element of  $J_x X$ , which means that X is quasi-reflexive of order  $\le n$ .

REMARK. Theorems 1 and 2 contain a generalization of Fleming's theorem [3] that if X is a separable Banach space, then X is reflexive if and only if Q(X) = 1. The following theorem generalizes a theorem of [3] and [4].

THEOREM 3. A real Banach space X is quasi-reflexive of order  $\leq n$ , where  $n \geq 0$ , if and only if every norm-closed separable subspace Y of X has the property  $P_n$ .

*Proof.* If X is quasi-reflexive of order  $\leq n$  and Y is a closed subspace of X, then Y is also quasi-reflexive of order  $\leq n$  [1] and hence Y has property  $P_n$  by Theorem 2. Conversely, if every norm-closed separable subspace Y of X has property  $P_n$ , then every such Y is quasireflexive of order  $\leq n$  by Theorem 2, and hence X is quasi-reflexive of order  $\leq n$  by a theorem of Singer [6].

REMARK. In Theorem 3 the word "separable" can be deleted. By virtue of Theorem 1, Theorem 3 is also true if "property  $P_n$ " is replaced with "property that  $Q^{(n)}(Y) = 1$ ". Since a space X is quasireflexive of order n if and only if X is quasi-reflexive of order  $\leq n$ but not of order  $\leq (n-1)$ , Theorem 3 can easily be rewarded in such a way as to give a necessary and sufficient condition that X be quasireflexive of order exactly n.

4. THEOREM 4. If X is a real Banach space, then  $Q^{(0)}(X) = 1$  if and only if w-sequential convergence and w\*-sequential convergence coincide in X\*.

*Proof.* Suppose the two kinds of sequential convergence coincide and S is a subspace of  $X^*$ . If  $\{f_i\} \subset S$  and  $f_i \xrightarrow{w^*} f$ , then  $f_i \xrightarrow{w} f$ and hence some sequence of averages far out in  $\{f_i\}$  converges in norm to f [2, p. 40]; thus  $f \in S_1$ , the norm-closure of S, and hence  $\varphi_s(f) = ||f||$ . Therefore,  $C_X^{(0)}(S) = 1$  and  $Q^{(0)}(X) = 1$ .

Conversely, suppose there are a sequence  $\{f_i\}$  in  $X^*$  and an  $f_0 \in X^*$  such that  $f_i \xrightarrow{w^*} f_0$  but  $f_i \xrightarrow{w} f_0$ . Then there exists an  $F \in X^{**}$  such that  $F(f_i) \not\rightarrow F(f_0)$ . The sequence  $\{F(f_i)\}$  is bounded and hence contains a subsequence  $\{F(f_{i_j})\}$  such that the limit  $\alpha = \lim_j F(f_{i_j})$  exists, but  $\alpha \neq F(f_0)$ . Since  $F \neq 0$ , there exists  $g \in X^*$  such that  $F(g) \neq 0$ . Let  $g_j = f_{i_j} - (F(f_{i_j})/F(g))g$  for each  $j \in \omega$  and

$$g_{\scriptscriptstyle 0} = f_{\scriptscriptstyle 0} - rac{lpha}{F(g)}g$$
 .

Then  $F(g_j) = 0$  for each  $j \in \omega$ , but  $F(g_0) \neq 0$ . For every  $x \in X$ ,

$$g_j(x) \rightarrow f_0(x) - rac{lpha}{F(g)} g(x) = g_0(x) \; ,$$

so that  $g_j \xrightarrow{w^*} g_0$ . Let S be the norm-closed subspace of  $X^*$  spanned by  $\{g_j : j \in \omega\}$ . Then  $g_0 \in K_x(S)$ , but  $g_0 \notin S$ , since  $F(g_0) \neq 0$  whereas F(f) = 0 for all  $f \in S$ . Thus  $S \notin \mathscr{T}_0(S)$ , and hence X does not have property  $P_0$ , so that  $Q^{(0)}(X) = \infty$  by Theorem 1.

#### References

1. P. Civin and B. Yood, *Quasi-reflexive spaces*, Proc. Amer. Math. Soc. 8 (1957), 906-911.

2. M. M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, 1958.

3. R. J. Fleming, Weak\*-sequential closure of subspaces of conjugate spaces, Dissertation, Florida State University, Tallahassee, 1965.

4. \_\_\_\_\_, R. D. McWilliams and J. R. Retherford, On w\*-sequential convergence, type P\* bases, and reflexivity, Studia Math. 25 (1965), 325-332.

5. R. D. McWilliams, On the w\*-sequential closure of subspaces of Banach spaces, Portugal. Math. 22 (1963), 209-214.

6. I. Singer, Weak compactness, pseudo-reflexivity and quasi-reflexivity, Math. Annalen **154** (1964), 77-87.

7. A. E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958.

Received June 15, 1965. Supported by National Science Foundation Grant GP-2179.

FLORIDA STATE UNIVERSITY

#### PACIFIC JOURNAL OF MATHEMATICS

#### EDITORS

H. ROYDEN

Stanford University Stanford, California J. DUGUNDJI Department of Mathematics Rice University Houston, Texas 77001

RICHARD ARENS University of California Los Angeles, California 90024

#### ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF

K. Yosida

#### SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

J. P. JANS University of Wash

University of Washington Seattle, Washington 98105

### **Pacific Journal of Mathematics**

Vol. 23, No. 1 March, 1967

| M. J. C. Baker, A spherical Helly-type theorem                                        | 1   |
|---------------------------------------------------------------------------------------|-----|
| Robert Morgan Brooks, <i>On locally m-convex</i> *- <i>algebras</i>                   | 5   |
| Lindsay Nathan Childs and Frank Rimi DeMeyer, On automorphisms of                     |     |
| separable algebras                                                                    | 25  |
| Charles L. Fefferman, A Radon-Nikodym theorem for finitely additive set               |     |
| functions                                                                             | 35  |
| Magnus Giertz, On generalized elements with respect to linear                         |     |
| operators                                                                             | 47  |
| Mary Gray, Abelian objects                                                            | 69  |
| Mary Gray, Radical subcategories                                                      | 79  |
| John A. Hildebrant, On uniquely divisible semigroups on the two-cell                  | 91  |
| Barry E. Johnson, AW*-algebras are QW*-algebras                                       | 97  |
| Carl W. Kohls, <i>Decomposition spectra of rings of continuous functions</i>          | 101 |
| Calvin T. Long, Addition theorems for sets of integers                                | 107 |
| Ralph David McWilliams, On $w^*$ -sequential convergence and                          |     |
| quasi-reflexivity                                                                     | 113 |
| Alfred Richard Mitchell and Roger W. Mitchell, Disjoint basic                         |     |
| subgroups                                                                             | 119 |
| John Emanuel de Pillis, Linear transformations which preserve hermitian               |     |
| and positive semidefinite operators                                                   | 129 |
| Qazi Ibadur Rahman and Q. G. Mohammad, <i>Remarks on Schwarz's</i>                    |     |
| lemma                                                                                 | 139 |
| Neal Jules Rothman, An L <sup>1</sup> algebra for certain locally compact topological |     |
| semigroups                                                                            | 143 |
| F. Dennis Sentilles, Kernel representations of operators and their                    |     |
| adjoints                                                                              | 153 |
| D. R. Smart, <i>Fixed points in a class of sets</i>                                   | 163 |
| K. Srinivasacharyulu, Topology of some Kähler manifolds                               | 167 |
| Francis C.Y. Tang, On uniqueness of generalized direct decompositions                 | 171 |
| Albert Chapman Vosburg, On the relationship between Hausdorff dimension               |     |
| and metric dimension                                                                  | 183 |
| James Victor Whittaker, <i>Multiply transitive groups of transformations</i>          | 189 |