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DISJOINT BASIC SUBGROUPS

A. RICHARD MITCHELL AND ROGER W. MITCHELL

This paper arose from consideration of the following ques-
tions. First, what characterizes those infinite Abelian reduced
p-groups which possess disjoint basic subgroups? Second, are
there properties that a basic subgroup must possess to insure
the existence of a basic subgroup disjoint from it?

We show that a necessary and sufficient condition for an
infinite Abelian reduced p-group G to contain disjoint basic
subgroups is that \G\ = final rank G. Futhermore, in such a
group a necessary and sufficient condition for a basic sub-
group B to have a basic subgroup disjoint from it is that B
is a lower basic subgroup of G.

Throughout this paper the word "group" will mean "Abelian
group" and the notation used will be that of L. Fuchs in [l] with
the exception that A φ J 5 will denote the direct sum of the groups
A and B, and A + B will be the, not necessarily direct, sum.

We will use the following theorem:

THEOREM A. (Mitchell and Mitchell in [4]) Let G be an infinite
reduced Abelian p-group and B a basic subgroup of G such that G/B =
ΣiaeΛGJB) where GJB = Z(p°°) for all a el. Then G = H@K and
B = Hφ L where L is a basic subgroup of K such that r(K/L) =
r(G/B) = 11\ and \K\ — maximum {)&0, \I\}.

We first prove the following lemmas:

LEMMA 1. Let G be a p-group without elements of infinite
height, and such that final rank (G) = \G\. Let B be a lower basic
subgroup of G. Then there exists a basic subgroup, B', of G which
is disjoint from B.

Proof. Let B = Σ α € z <!/«>, and let G/B = Σ ^ J Cβ where each
Cβ = Zip03). Let {{ya \ael], {cβ,n \βe J, n = 1, 2, . .}} be a quasibasis
for G. Since B is a lower basic subgroup of G and final rank
(G) = | G | , we have \J\ = r(G/B) = \ G\ ^ | B \ ^ | / | . If indeed we
have IJ \ > 11 \ a pure subgroup H of G can be chosen such that
H^B^H1 = 0, and final rank (H) = \H\ = \I\. We can then prove
that there is a basic subgroup Bf of H which is disjoint from B and
H being pure in G will insure B' is a basic subgroup of H. Thus
it suffices to complete the proof when \J\ = \I\ and we will assume
moreover I = J.
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Now for each a el choose from {ca,n}ζ=1 the element ca,2E(ya). Define
B' = ζ{ya — pE{ya)ca>2E{y(χ)}aeiy. We now claim t h a t B' is the desired

basic subgroup of G which is disjoint from B. To see this we prove
the following:

( i ) First claim that

Suppose that

then

Σ di
i l

Since the

we would be finished if Σ?-iα<2/«4 = 0,' so we can assume that
Σ?=i aiVoci ^ 0> a n ( i without loss of generality a{ is not equal to 0
mod o(yai). Now the height Aβ(Σ?=i aiVai) = r, where r is the largest
positive integer such that pr divides each aif since yΣΓi^1aiy(Xi is an
element of B = Σ«ez <̂ /«>. But,

Va^ait2E^yai)) ^ minimum{r + E(ya.)} > r ,

which contradicts the equality

Therefore, we must have that

(ii) Next we will show that B' is a pure subgroup of G. Let
zeB'[p], and write

n

where each α { is relatively prime to p. Now we have that

= minimum {E(ya.) - 1} .
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B u t

and

hJφ^iV^^-'Oa^mv^ ^ minimum {2E(yai) - 1}

> minimum {E(ya) — 1} ,
i—l,'",n

and

J t Λ = minimum {E(ya.) - 1} .
ί = l »ί=l , . ,»

Since the height of the sum of two elements with different heights
is just the height of the smaller, we have that

hG(z) = minimum {E(ya) — 1} .

Therefore hΘ(z) — hB,{z) for each element zeB'[p], and hence by
Lemma 7, page 20, in [3], we have that J5' is pure.

(iii) We will now complete the proof that Bf is a basic subgroup
of G by showing that B' cannot be extended to a larger pure direct
sum of cyclic groups. Suppose that B' ®<V> is a pure direct sum
of cyclic groups. Since {{ya \ael}, {ca,n \ a e /, n = 1, 2, •}} is a quasi-
basis for G, we can write

N o w w e also k n o w t h a t cajtr. = pca.,rj+1 + bά w h e r e bdeB = Σ*ei<?/«>,
h e n c e w e c a n w r i t e

^ — x i ^jP^ajiVj+l i x i villas

Now write

where each t\ is divisible by p, and each £$', is relatively prime to p.
We are assuming that H = 5 'φ<^> is pure in G, and hence, hθ(z) =
hH(z) = 0, and since H is a direct sum of cyclic groups we must also
have that hH{bf + z) — 0, for any bf e B. Consider the following element
of B\

m2

< = 1 * ai ai>2E yai
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Now we have

a.,r.+1 + Σ *<!/«, + Σ
m 2

thus
m 2

but this contradicts the assumption that H is a pure subgroup of G.
Thus 5 ' is a basic subgroup of G.

To complete the proof of the theorem, we need only show that
B n B' = 0. To see this suppose that

Σ M % - ί>*(1Vcβi fJUΪ(1,βy)) = Σ <*<»«,

Consider

Σ a<ye< + £ = 0 + JS = Σ 8y(»βy - P J f (Vcσ y f W f (,β y )) + B

so that sjca.tEiyaj) + B = 0 + B for j = 1, , k since each is from a
different summand of G/B. But this means that s3- is divisible by
pZKVaj) for j = 1, . . , β. Thus

and soίnδ'^0.

LEMMA 2. Lei G be a reduced p-group such that final rank
(G) = \G\. Let B be a lower basic subgroup of G. Then there
exists a basic subgroup Bf of G which is disjoint from B.

Proof. Let H be a high subgroup of G which contains B. By
Theorem 5 in [2] H is pure and a basic subgroup of H is a basic
of G. Thus rank (G/B) = rank (H/B) + rank(G/ίΓ), and we consider
the following cases:

Case (i). Suppose that rank (H/B) = rank (G/B), then we know that
final rank (H) ^ rank (H/B) = rank (G/B) - final rank (G) = \G\^\H\.
Thus final rank (H) = \H\, and Lemma 1 completes the proof.
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Case (ii). Suppose that rank (G/B) > rank (H/B). Since \G\ =
final rank (G), and final rank (G) = rank (G/B), we know that rank (G/B)
is infinite. But if rank (G/B) > rank (H/B), and is infinite, then the
I G\p\ I is infinite, and hence we have | G\p] \ = rank (G/H) > rank (H/B).
Now rank (G/B) = rank (H/B) + rank (G/H) = rank (H/B) + | G\p\ \,
and thus | G\p\ | = rank ((?/£) = | G | So that | G\p\ I ̂  151, and for
the purposes of this proof we can assume that | Gι[p\ I = \B\. Let
G\v\ = Σ«ei<!/«>, and let B = Σ « e z « > . For each α e ί choose za

such that #α = pEiXa)~1za, which can be done since each ya has infinite
height. Now consider the subgroup B' = <{xα + 2α}αez>. We claim
that Bf is a basic subgroup of G which is disjoint from 5 . To see
this we prove:

( i ) First we must show that B' — Σ α € /<^α + 2«> Suppose

Σ
where α< ̂  Omod(o(^)), and a{ < o(a?α<). Notice that o(xa) = o(a?α + sα)
since pd/α) = 0 = pE{Xcί)za. Let fc< be the largest positive integer such
that pki divides a{. Let r = maximum<s=1,...,Λ {E(xa.) — k^, and consider

0 = p ' - ^ Σ M<cβ< + ««4)) = Σ aiP'-'Xa. +

Hence we have

but this means that an element of infinite height is equal to an element
of finite height which is contradiction. Thus B1 = Σαe/^α + zay.

(ii) We must show that B' is pure. Let seB'[p], and write

where a{ is relatively prime to p for each i. Since Bf = Σ«ez <(̂ « +
we know that hB,(s) = minimumί=1,...fΛ {E(xa.) — 1}. Now consider

K(s) -

= minimum {E(xaf) — 1} .
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Thus Bf is a pure subgroup of G.
(iii) To complete the proof that 5 ' is a basic subgroup of G,

we need only prove that the quotient GjB' is divisible. If every
element s + B' e (G/B')[p] has infinite height then GjB' is divisible.
Thus we can assume hΘ!B,(s + Bf) = n, a finite integer, and we can
assume that o(s) = o(s + Bf). Now since G/B is divisible we know
that β + B has infinite height in G/B. Consider the following cases:

Case (a). Suppose that seB, then

where α̂  is relatively prime to p for each i. Now define the following
element of Bf, let

V = Σ«ί2>* ( β β* )-1(αjβ i + zai).

But

s - V = Σ α. ̂ j , and Σ α*2/αi

has infinite height in G so that hQjB,{s + B') is infinite. Therefore
GIB' must be divisible.

Case (b). Suppose that s 0 B, then there exists an element
Σ Γ = i ^ e 5 , such that

since hσ,B(s + B) is infinite. Now write

m r

Σ n v *— V o v 4-
t

where Cj is divisible by p^^βj 1"1, and dk is not divisible by pE{x"k)~ι.
Thus

s + Σ CjXas + Σ d ^ α f c = Pn+1Q
3=1 3 k=l

and so multiplication by p yields

Σipdkxak = pn+2g .

By choice of the xajc's we know pdkxa]c Φ 0. Thus we must have
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Therefore by letting c'ά = cj/pE{x^j)~1 we have that

Consider

b'

Then

the

r

element V

b'

j = l

eB'

= P

s u c h

- *.,)

- V

that

r

r

3=1

= pn+ιg'

since Σ5=icί2/α, has infinite height in G. But this implies that

hθlB,(s + Bf) ^ w + 1

which contradicts the assumption that hGIB,(s + B') = n. Thus
must be divisible.

(iv) To complete the proof of the theorem, we need only show
that B Π Br = 0. To see this, suppose that

so

Σ diXa. = Σ 8j{Xa. + «βj.) ^ 0

n K K

ΐ=i i=i * i=i J

and by multiplying both sides of this equation by an appropriate
power of p we get an element of infinite height on one side and an
element of finite height on the other side, which is a contradiction.
Thus B n B' = 0, and the proof is finished.

The following theorem gives a sufficient condition for a group G
to possess disjoint basic subgroups.

THEOREM 3. Let G be a reduced Abelian p-group. If final rank
(G) = \G\, then G contains two disjoint basic subgroups.

Proof. Since every p-group has a lower basic subgroup, then
Lemma 2 will complete the proof.

The next corollary shows that the restriction final rank (G) = \G\,
can be removed if instead of disjoint basic subgroups, one is seeking
two basic subgroups whose intersection is bounded.

COROLLARY 4. Let G be a reduced Abelian p-group. Then there
exists two basic subgroups of G whose intersection is bounded.
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Proof. By Theorem 31.5, page 106, in [l], we can write G =
H@K, where K is bounded direct sum of cyclic groups, and final
rank (H) — \H\. Now by Theorem 3 there exists A and B which
are disjoint basic subgroups of H. Now A 0 K and B 0 K are basic
subgroups of G whose intersection is bounded.

THEOREM 5. Let G be a reduced Abelian p-group, and suppose
that A and B are two disjoint basic subgroups of G. Then rank
(G/A) = rank {GjB) = | G | .

Proof. Suppose that rank (G/A) < \G\, then by Lagrange's
Theorem and since basic subgroups are isomorphic we know that
\G\ = \B\ = |A | . By Theorem A we have G = LφF and A =
A' 0 F, where \L\ = maximum { 0̂> rank (G/A)}. Since A and B are
disjoint basic subgroup of G we know G cannot be bounded. Now
(G/A)[p]Z)[(A®B)/A][p] and | [(A 0 B)/A][p] \ = \ B | which must be
at least \%0. Thus rank (G/A) ^ \%0, and therefore

I L I = r a n k (G/A) <\G\.

We can write each xeB as x — yx + fx, where yxeL and fx e F.
Since | J B | = | A | = | G | > | L | and B is a subgroup, there must exist
some y eB such that y e F, but Fa A which contradicts A Π B = 0.
Thus rank (G/A) = | G | , and similarity rank (G/B) = \G\.

We are now in a position to state the results of the original
questions in Theorem 6 and Theorem 7.

THEOREM 6. A necessary and sufficient condition for a reduced
Abelian p-group to possess disjoint basic subgroups is that final
rank(G) = \G\.

Proof. If final rank(G) = \G\ then Theorem 3 completes the
proof. If A and B are disjoint basic subgroups of G then by
Theorem 5 we have r(G/A) = r(G/B) = | G |. But final rank (G) ^
rank (G/M) for any basic subgroup M of G. Thus final rank (G) Ξ>
rank (G/A) = \G\, and since \G\ ^ final rank (G) we have final rank

= \G\.

THEOREM 7. If G is a reduced Abelian p-group such that final
rank (G) = | G | , and A is a basic subgroup of G, then there is a
basic subgroup of G which is disjoint from A if and only if A is
a lower basic subgroup of G.

Proof. If A is a lower basic subgroup then Lemma 2 assures
the existence of a disjoint basic subgroup. If G possesses a basic
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subgroup B disjoint from A then by Theorem 5 we have rank (G/A) =
|G | and by hypothesis final rank(G) = \G\ thus rank (G/A) — final
rank (G) and A is a lower basic subgroup.
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