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DISJOINT BASIC SUBGROUPS

A. RicHARD MITCHELL AND ROGER W. MITCHELL

This paper arose from consideration of the following ques-
tions. First, what characterizes those infinite Abelian reduced
p-groups which possess disjoint basic subgroups? Second, are
there properties that a basic subgroup must possess to insure
the existence of a basic subgroup disjoint from it?

We show that a necessary and sufficient condition for an
infinite Abelian reduced p-group G to contain disjoint basic
subgroups is that |G| = final rank G. Futhermore, in such a
group a necessary and sufficient condition for a basic sub-
group B to have a basic subgroup disjoint from it is that B
is a lower basic subgroup of G.

Throughout this paper the word “group” will mean <“Abelian
group” and the notation used will be that of L. Fuchs in [1] with
the exception that A @ B will denote the direct sum of the groups
A and B, and A + B will be the, not necessarily direct, sum.

We will use the following theorem:

THEOREM A. (Mitchell and Mitchell in [4]) Let G be an infinite
reduced Abelian p-group and B o basic subgroup of G such that G/B =
Seer (Go/B) where G,/B = Z(p~) for all acl. Then G= H@ K and
B = H@ L where L is a basic subgroup of K such that r(K/L) =
rG/B) = |I| and | K| = maximum {W,, | I|}.

We first prove the following lemmas:

LeMMA 1. Let G be a p-group without elements of infinite
height, and such that final rank (G) = |G|. Let B be a lower basic
subgroup of G. Then there exists a basic subgroup, B’, of G which
1s disjoint from B.

Proof. Let B = D.e; Y., and let G/B = >e; Cs where each
Cy = Z(p~). Let {{y.|lael}, {cs.|Bed,n=1,2,-..}} be a quasibasis
for G. Since B is a lower basic subgroup of G and final rank
(G) = |G|, we have |J|=r(G/B)=|G|=|B|=|I|. If indeed we
have |J| > |I| a pure subgroup H of G can be chosen such that
H>oB,H'=0, and final rank (H) = |H| = |I|. We can then prove
that there is a basic subgroup B’ of H which is disjoint from B and
H being pure in G will insure B’ is a basic subgroup of H. Thus
it suffices to complete the proof when |J| = |I| and we will assume
moreover I = J,
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Now for each a € I choose from {c,,.}»-; the element ¢,,;5(,,. Define
B' = {y. — 0""¥Cooniyptaesy. We now claim that B’ is the desired
basic subgroup of G which is disjoint from B. To see this we prove
the following:

(i) First claim that

B’ = ‘% <ya - pE(ﬂa> ca,zE(ya)> .

Suppose that

n
0= Z{ ai(ym; - pEwai>cai,2E<vai)) ’

then

n n

2 Qe = 2, 0 PPV Coopiy .

i=1 i=1 v
Since the

E(y, — p°Y9 Cooniv,) = E(Ye) ,

we would be finished if 37 a;¥,, =0, so we can assume that
St 0:Ya, # 0, and without loss of generality a; is not equal to 0
mod o(y.,). Now the height h (37, ay,,) = r, where r is the largest
positive integer such that p” divides each a;, since 7. aw,, is an
element of B = >.e;<{¥.>. But,

hel 330507 Caponi ) Z minimum {r + By} > 7,
=1 v K3

1=1,2,+24,n

which contradicts the equality

n €n
Z a’iya,; — Z aipE(yai)cai’ZE(yai) .
4=1 t=1

Therefore, we must have that

B' =3, <ya — pFia cu,ZEwa)> .
a€rl

(ii) Next we will show that B’ is a pure subgroup of G. Let
z¢€ B'[p], and write

n
z= % @ PPV (Yo, — D7 Copaniay)
where each a; is relatively prime to p. Now we have that
hp(2) = mirllimum {hala; p?Ped (Y, — "V Copaniy, )]}
iml,eeem

= minimum {¥(y.,) — 1} .
G=1,e00,m
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But
ha(z) = h{(é a,-pE‘”ai)*lya,) - <Z:‘i aipw”’%)“cai,ma,g)] ,
and
h"(; a; pPEYa)t cai,m(y%)> = minimum {2K(y,,) — 1}
> mjg%ypgm {E(y.,) — 1},
and

hg<zn“ a; pP¥ay) yai> = minimum {¥ (y,,) — 1} .
i=1 4=1,¢",0

Since the height of the sum of two elements with different heights
is just the height of the smaller, we have that

he(2) = minimum {E(y,,) — 1} .
t=1,++,7

Therefore h z) = hz(2) for each element ze< B’[p], and hence by
Lemma 7, page 20, in [3], we have that B’ is pure.

(iii) We will now complete the proof that B’ is a basic subgroup
of G by showing that B’ cannot be extended to a larger pure direct
sum of cyclic groups. Suppose that B’ <{z> is a pure direct sum
of cyclic groups. Since {{y,|ael},{c..|lacl,n=1,2, ...}}is a quasi-
basis for G, we can write

n k
z = .Z;“iy%' 4 lejcaj,rj .
= i=

Now we also know that c,,,, = DCa;r;+1 + b; where b; € B = 3\.e:<{¥o)s
hence we can write

k L3
z2 = le sjpcaj,rj-l—l + Z{ tiyai .
i= i=

Now write
k my , m2 "
z = Zisjpcdjy‘rj'H + Zitiyai + 2:; ti ya,;
= &= =

where each t! is divisible by p, and each ¢, is relatively prime to p.
We are assuming that H = B’ @ <z) is pure in G, and hence, h42) =
hxz(z) = 0, and since H is a direct sum of cyclic groups we must also
have that 4.’ + 2) = 0, for any o’ € B, Consider the following element
of B’,

m

Z t;’(yui — pPle) ca,,;y2E(Zla1-)) .

=1
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Now we have
mQ

2 — zi 8 Yoy — PPV cai,ZE(vai))

i=
k my mg
= Z Sjpczx 7T+l + 2 t:Zya- + 2 ti'pm”“i)ca-,w(y )y
i=1 7 i=1 L= P e
thus
mg
B2 = 38 ey = D" Capaningg) Z 1,
=

but this contradicts the assumption that H is a pure subgroup of G.
Thus B’ is a basic subgroup of G.

To complete the proof of the theorem, we need only show that
BN B'=0. To see this suppose that

k n
.  mBWy ) — .
:gisy(yaj D e Caj,w(uaj)) igiaw?/ai .
Consider
% k
'Zl aiya’,; + B = 0 + B = z‘; sj(ya'j - E(”aj) caj,ZE(ﬂaj)) + B
= =
®
= 3,897 Caj0my, ) + B
j=1 I
k
= >, s;¢
=

4 j aj,E(vaj) + B ’

so that SiCam,y T B =0+ B for j =1, .-,k since each is from a
different summand of G/B. But this means that s; is divisible by
pf¥;) for j =1, -+, k. Thus

. ,
_Z S.i(yaj - pE(yaj) CaijE(yaq.)) =0 ’
=1

and so BN B' = 0.

LEMMA 2. Let G be a reduced p-group such that final rank
(G) =|G|. Let B be a lower basic subgroup of G. Then there
exists a bastc subgroup B’ of G which is disjoint from B.

Proof. Let H be a high subgroup of G which contains B. By
Theorem 5 in [2] H is pure and a basic subgroup of H is a basic
of G. Thus rank (G/B) = rank (H/B) + rank (G/H), and we consider
the following cases:

Case (i). Suppose that rank (H/B) = rank (G/B), then we know that
final rank (H) = rank (H/B) = rank (G/B) = finalrank (G) = |G| = | H|.
Thus final rank (H) = | H|, and Lemma 1 completes the proof.
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Case (ii). Suppose that rank (G/B) > rank (H/B). Since |G| =
final rank (@), and final rank (G) = rank (G/B), we know that rank (G/B)
is infinite, But if rank (G/B) > rank (H/B), and is infinite, then the
| GY[p]| is infinite, and hence we have |G'[p]| = rank (G/H) > rank (H/B).
Now rank (G/B) = rank (H/B) + rank (G/H) = rank (H/B) + | G'[p]],
and thus |G'p]]| = rank (G/B) = |G|. So that |G'[p]| = | B|, and for
the purposes of this proof we can assume that |G'p]| = |B|. Let
GY[p] = Seer ¥, and let B = >,.e;<{%,>. For each ael choose z,
such that y, = p?®«~'2z,, which can be done since each y, has infinite
height. Now consider the subgroup B’ = {{&, + Z,}.er>. We claim
that B’ is a basic subgroup of G which is disjoint from B. To see
this we prove:

(1) First we must show that B’ = > ,¢;<{x, + 2,>. Suppose

é ai(xai + za,i) = 0 b
i=1
where a; = 0mod (o(x.,)), and a; < o(x,,). Notice that o(x,) = o(x, + 2.)

since p(y,) = 0 = pP@dz,, Let k; be the largest positive integer such
that p* divides a;. Let r = maximum,.,,...,, {E(2.,) — k;}, and consider

0=p" (; a; (%o, + z)> Z ;P %, g Pz
Hence we have
)y Yoy = — i a; P, ,

but this means that an element of infinite height is equal to an element
of finite height which is contradiction. Thus B’ = >.e; <%, + 2.
(ii) We must show that B’ is pure. Let se B’[p], and write

n
s = 3, ;") N (X, + 24,)
i=1 v

where q; is relatively prime to p for each i. Since B’ = > ¢, <%, + 2.,
we know that h;(s) = minimum,.,,...,, {E(%,,) — 1}. Now consider

he(s) = he(ﬁ Pla) g, + Zn; a; pE(mai)_lzai)
= =

= mlnlmum {E(%,,) — 1} .

i=1,-

n
~1
E/xai) wai + z;“i?/%)
i=

||Ms
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Thus B’ is a pure subgroup of G.

(iii) To complete the proof that B’ is a basic subgroup of G,
we need only prove that the quotient G/B’ is divisible. If every
element s + B’ e (G/B’)[p] has infinite height then G/B’ is divisible.
Thus we can assume /hg (s + B’) = n, a finite integer, and we can
assume that o(s) = o(s + B’). Now since G/B is divisible we know
that s + B has infinite height in G/B. Consider the following cases:

Case (a). Suppose that se B, then

m
s = Z aipE(xa":).—lxa
=1

i

where a; is relatively prime to p for each 7. Now define the following
element of B’, let

b= S, 4P (g, + 2 -
i=1
But
s—0b = i @Yo, » and }E Yo,
=1 =1
has infinite height in G so that hgm(s + B’) is infinite. Therefore
G/B’ must be divisible.
Case (b). Suppose that s¢ B, then there exists an element
>t 0%, € B, such that
s + f] ;% = Pty
i=1
since hgz(s + B) is infinite. Now write
m r £
20Ty = 308, + 3, A%y, ,
i=1 i=1 k=1

where ¢; is divisible by p?@®y~!, and d, is not divisible by p?@~s'',
Thus

r 13
s+ 368, + X, di,, = D"y
i=1 k=1
and so multiplication by p yields
i
P pd, %, = D" .
By choice of the w,,’s we know pd,x., # 0. Thus we must have

ho( 5 v ) 20+ 1
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Therefore by letting ¢} = ¢;/p?*=;~* we have that

.
s + _Zipmaj)“lcg To; = "G
=

Consider the element b’ € B’ such that

b = écmm’”aﬁ“l(% + 24,) = Z{ ¢ PP "), Z{ €Y -
Then
s — b =p"g — gcmj = p"tg”
since 37, ciy,; has infinite height in G. But this implies that

haim(s + B) = n + 1

which contradicts the assumption that A4 (s + B’) = n. Thus G/B’
must be divisible.

(iv) To complete the proof of the theorem, we need only show
that BN B’ = 0. To see this, suppose that

n k
D%, = D, 8i(Xe, + Ra,) 0
i=1 v i=1 ’ I

SO
n k k
DU Wiy, — D, 8ile, = X, SR # 0,
i=1 j=1 J i=1

and by multiplying both sides of this equation by an appropriate
power of p we get an element of infinite height on one side and an
element of finite height on the other side, which is a contradiction.
Thus BN B’ = 0, and the proof is finished.

The following theorem gives a sufficient condition for a group G
to possess disjoint basic subgroups.

THEOREM 3. Let G be a reduced Abelian p-group. If final rank
(G) = |G|, then G contains two disjoint basic subgroups.

Proof. Since every p-group has a lower basic subgroup, then
Lemma 2 will complete the proof.

The next corollary shows that the restriction final rank (G) = |G|,
can be removed if instead of disjoint basic subgroups, one is seeking
two basic subgroups whose intersection is bounded.

COROLLARY 4. Let G be a reduced Abelian p-group. Then there
extists two basic subgroups of G whose intersection is bounded.
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Proof., By Theorem 31.5, page 106, in [1], we can write G =
H® K, where K is bounded direct sum of cyclic groups, and final
rank (H) = |H|. Now by Theorem 3 there exists A and B which
are disjoint basic subgroups of H. Now A@ K and B@ K are basic
subgroups of G whose intersection is bounded.

THEOREM 5. Let G be a reduced Abelian p-group, and suppose
that A and B are two disjoint basic subgroups of G. Then rank
(G/A) = rank (G/B) = |G|.

Proof. Suppose that rank (G/A) < |G|, then by Lagrange’s
Theorem and since basic subgroups are isomorphic we know that
|G| =|B|=|A|. By Theorem A we have G=L@F and A=
A’ @ F, where |L| = maximum {}R,, rank (G/A)}. Since A and B are
disjoint basic subgroup of G we know G cannot be bounded. Now
(G/A)[p] o [(A @ B)/Allp] and |[(AD B)/Allp]| = | B| which must be
at least W,. Thus rank (G/A) = N,, and therefore

| L| = rank (G/A) < |G|.

We can write each xeB as « =y, + f,, where y,eL and f,eF.
Since |B|=]A|=|G|>|L| and B is a subgroup, there must exist
some y € B such that ye F, but Fc A which contradicts AN B = 0.
Thus rank (G/A) = |G|, and similarity rank (G/B) = |G|.

We are now in a position to state the results of the original
questions in Theorem 6 and Theorem 7.

THEOREM 6. A necessary and sufficient condition for a reduced
Abelian p-group to possess disjoint basic subgroups is that final
rank (G) = |G|.

Proof. If final rank (G) = |G| then Theorem 3 completes the
proof. If A and B are disjoint basic subgroups of G then by
Theorem 5 we have 7(G/A) = »(G/B) = |G|. But final rank(G) =
rank (G/M) for any basic subgroup M of G. Thus final rank (G) =
rank (G/A) = |G|, and since |G| = final rank (G) we have final rank
(@) =1G]

THEOREM 7. If G is a reduced Abelian p-group such that final
rank (G) = |G|, and A is a basic subgroup of G, them there is a
basic subgroup of G which is disjoint from A if and only if A is
a lower basic subgroup of G.

Proof. If A is a lower basic subgroup then Lemma 2 assures
the existence of a disjoint basic subgroup. If G possesses a basic
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subgroup B disjoint from A then by Theorem 5 we have rank (G/A4) =
|G| and by hypothesis final rank (G) = |G| thus rank (G/A) = final
rank (G) and A is a lower basic subgroup.
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