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This paper may be considered as another chapter in the
theory of convolution algebras inaugurated by Hewitt and
Zuckerman. The interest here is in finding an L1 theory for
locally compact commutative topological semigroups which
extends the known h theory for discrete commutative semi-
groups and L1 theory for locally compact topological groups.
Let S be a locally compact commutative semigroup and m a
nonnegative regular Borel measure on S such that if x e S
and EaS with m(E) = 0 then m(Eχ-1) = 0 (Ex-1 = [y:yxe E]).
When L^S, m) is defined as the Banach space of all bounded
complex measures μeM(S) which are absolutely continuous
with respect to m, then L^S, m) is a convolution algebra as
a subalgebra of M(S). It is shown that there is a one to one
correspondence between the measurable semicharacters on S
and the multiplicative linear functionals on LHS, m) analogue
to the group situation. Extensions of the above results to
those S with a measure m satisfying the above condition in
a local sense are also obtained.

This research was motivated by the results of Hewitt and Zuckerman
[2,3] and the desire to find that condition that the counting measure
on a discrete semigroup and Haar measure on a locally compact group
possess that cause their respective U spaces to be convolution algebras.
The notation and terminology used here can be found in [4]. In
addition, we use S\A to indicate the complement of the set A in S
and 0 to denote the empty set.

2* Existence of Lι(S, m) as an algebra* In this section we
define for a locally compact topological semigroup S possessing non-
negative regular Borel measure m the Banach space 17(5, m) and
give sufficient conditions on m so that UiS, m) is a Banach algebra.
It is clear that if S is a group (it will then be a locally compact
topological group) and m is Haar measure on S then UiS, m) is the
usual group algebra of S. It is also clear that if S is a discrete
commutative semigroup and m is the counting measure on S, then
L\S, m) is Hewitt and Zuckermans lx(S).

The space of all continuous complex valued functions on S
vanishing at infinity is denoted by CQ(S) and its dual space C0(S)*
by M(S), the corresponding bounded complex measures via fl, 14.4],
The space M(S) is to be considered as a Banach algebra with multi-

143



144 NEAL J. ROTHMAN

plication given by the convolution of measures, that is if μ, v e M(S)
then μ*v(f) — \\f(xy)μ(dx)v(dy). At times this identification will be
glossed over and we will write μ(E) for μ(ψE) etc. For two complex
valued Borel measures μ and v on S, v is said to be absolutely-
continuous with respect to μ (written v < μ) if for each Borel set
Ec. S, μ(E) = 0 implies v{E) = 0.

DEFINITION. Let S be a locally compact topological semigroup
and m a regular Borel measure on S. We define

L\S, m) = [μ: μ e M(S) and μ < m] .

PROPOSITION 2.1. The space D(S, m) is a Banach Space.

NOTATION. For any subset EaS and xe S. Let

Ex-1 = [y:yeS-yxeE]

and

x~λE =[y;yeS xyeE].

There follows immediately:

LEMMA 2.2. If xeS and E is open (closed) then x~ιE and Ex~λ

are both open (closed). If xe S and E is a Borel set then so are
x~λE and Ex~\

THEOREM 2.3. Let S be a locally compact topological semigroup
and m a regular Borel measure on S. If for each E c S with
m(E) — 0, m(Ex^) = 0 for almost all x e S, then L\S, m) is a
subalgebra of M(S).

Proof. Let μ and v belong to L\S, m) and let E be any set in
S with m(E) — 0. Now there is a set F of measure 0 such that
m(Ex~1) = 0 for all x g F. Since

μ*v(E) =

= \ μ(Ey~1)v(dy) + \ μ(Ey-1)v(dy) ,
JF JS\F

and μ(Ey~λ) = 0 for y e S\F, and v(F) = 0, it follows that μ*v(E) = 0
and μ*v<tm. Thus, μ^vL1(S1m) and L1(S1m) is a subalgebra of
M(S).

It is obvious that the requirement in the above theorem on the
measure m is always satisfied by Haar measure on a locally compact
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group and by the counting measure on a discrete semigroup. However,
the following condition is weaker than left invariance of a measure
and also satisfies the hypothesis in the above theorem. If m is a
nonnegative regular Borel measure such that m(Ex) ^ m(E) for all
measurable sets E, then m(Ex~ι) ^ mdEx^x) <̂  m(E) since (Ex-^xaE;
thus, if m(E) = 0 then m{Ex~ι) = 0. There follows:

COROLLARY 2.4. If S is a locally compact topologίcal semigroup
with a nonnegative regular Borel measure m, for which m(Ex) ^ m(E)
whenever E is a Borel set, then Z/(S, m) is a Banach subalgebra of
M(S).

We note that the condition on m in the corollary above does not
force S to be a subset of a group. For let T be the cartesian
product of [0, oo) with a two element group {0,1} with coordinate
wise operations. Let & be the relation on T for which (x, y)&(a, b)
where 0 ^ x < oo, 0 <̂  a < oo f yf b e {0,1} if and only if x = a and x >̂ 1
or x = a and y = 6. The resulting semigroup S = T / ^ (Figure 1)

can have induced the measure m given by m(E) = (λ x μ){ζd~\E))
where 0 : T—»S is the natural mapping, λ is Lebesgue measure on
[0, oo] and μ is Haar measure on {0,1}. Then if

E = [(x, y ) : 0 £ x ^ l , y = l], m(E) = 1

but m[E + (1, 0)] = 2.
The conditions on the measure m in the preceding theorem and

corollary are very strong and the class of such semigroups under
discussion needs to be expanded. Let S be a locally compact topolo-
gical semigroup satisfying

(1) S is a union of disjoint locally compact subsemigroups Sα,
and

(2) on each S«, there exists a nonnegative regular Borel measure
ma such that if EaSa and ma(E) = 0, then m^Ex"1 Π Sα) = 0 for
almost all xe Sai and

(3) a set £ c S is measurable if and only if E f) Sa is measur-
able (ma) and m(E) = Σ /^«0E' Γl Sa).

THEOREM 2.5. Lβί S and m be as above. The Banach space
L\S, m) is isomorphic {algebraically and topologically) to the com-
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pletion of the weak direct sum of the subspaces UiSa, ma) (i.e., the
closure of the weak direct sum of the L\Sa, ma) in M(S)).

The proof of the above is straightforward.

3* Complex homomorphisms on L\S, m). In this section we
consider the multiplicative linear functions on the Banach algebra
L\S, m) and show that there is a correspondence with the m-measur-
able bounded complex-valued homomorphisms on S, when m is further
restricted.

Let S be a locally compact abelian topological semigroup and let
m be a nonnegative regular Borel measure on S such that (i) if E c S
and m(E) = 0 then m{Ex~ι) = 0, (ii) each compact set in S has finite
measure, and (iii) each nonempty open set has positive measure. The
conditions (ii) and (iii) are imposed in order to obtain (3.3) and (3.6).
They are always true in a locally compact topological group with m
as Haar measure and also in a discrete semigroup with counting
measure. Before the investigation of the relationship between the
multiplicative linear functionals on 1/(5, m) and the bounded complex
valued homomorphisms on S(θ(xy) = θ(x)θ(y)), the following are neces-
sary tools to be used.

LEMMA 3.1. Let μ e L\S, m) and xe S. Denote by x the point
measure at x in S. Then, μ*xeL\S,m).

Proof. If Ea S and m(E) = 0, then

μ*x(E) = ^

\ \ = μ(Ex~ι) .

Since μ < m and m{Eχ-χ) = 0, μ{Eχ-χ) = 0 and μ*xeLτ(S, m).
We state without proof:

LEMMA 3.2. Let A and B Borel sets in S and x e S, then
(1) x{χ-χA) c A,
( 2 ) ( a ) χ-\xA) =) A

( b) x~λ(xA) = A for all Borel sets A<=> S is a cancellation
semigroup,

( 3 ) χ-\S\B) = SMx-Ή)
(4) [x*μ](A) = μ(xriA)
(5) [x*\μ\](S\xB)£\μ\(S\B).

Equality in (1) above need not hold even in a cancellation semigroup,
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for let S = (0, 1], A = [1/2, 3/4] and x = (1/2), then x(χ-λA) = {1/2}.

DEFINITION. A character τ on S is a nontrivial (i.e. not identially
0) bounded homomorphism of S into the multiplicative semigroup of
complex numbers.

The set of all m-measurable characters will be denoted by S*.
Two characters which agree almost everywhere with respect to m
are to be considered as the same character.

THEOREM 3.3. Each τ e S * gives rise to a multiplicative linear
functional h on !/(£, m) via

h(μ) = \τdμ .

Conversely, each multiplicative linear functional h on L\S, m) defines

an m-measurable character τ on S and h(μ) = \τdμ.

Before proceeding with the proof, let us note that if S is a
group and m is Haar measure then the above theorem is a well known
result, since each measurable character is continuous [1]. Further,
the identification of elements of £* which agree a.e. (m) is necessary
in order to have a one-to-one correspondence of the measurable charac-
ters and the maximal ideal space of the Banach algebra 1/(5, m). In
-certain classes of semigroups with specially chosen measures to be
considered in a forthcoming paper, it will be shown that the measur-
able characters are continuous a.e. (m).

Proof of theorem. Let τ e S * and h(μ) = \τdμ, then it is known

that h is a bounded linear functional on L\Sy m) and it need only be
shown that h(μ*v) — h(μ)h(v). If μ, J; e L!(S, m),

h(μ*v) = \τd(μ*v) = \\τ(xy)μ(dx)v(dy)

= ^τ(x)τ(y)μ(dxMdy) = h(μ)h(v) .

Conversely, if h is a bounded multiplicative linear functional on
X:(S, m), then there is a bounded measurable function 0 e L°°(S, m)

such that h{μ)=\ζddμ. Let μeL\Sfm) with h(μ) Φ 0 and set

τ(x) = h(μ*x)/h(μ). If follows readily that τ is a well defined bounded
complex valued homomorphism on S independent of the choice of μ.

There remains to prove the measurability of τ. Fix λ e L^S, m)
such that h(X) = 1 and let E be a cr-compact subset of S such that
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\X\(S\E) = 0. Since (x*\X\)(S\E) ^ \X\(S\E) = 0 by (3.2) (5),

φ) = h(x*X) = \<2(y){x*\){dy) = \ψxB(y)0(y)(x**)(dy)

= \ψxE(%y)0(%y)Mdy) = \ψx-ι{xE)(y)0(xy)X(dy) ,

but, by (3.2), (2), x~1(xE)z>E and \X\(S\E) = 0 imply

]Ψx-MxB)\B(y)0(vy)Mdy) = O

so that

Let F be a compact subset of S with m(F) > 0. The function
/ : (x,y)—*ψF(x)ψE(y)0(%y) is Borel measurable on S x S and vanishes
outside F x i? a σ-compact set Now

(dy)m(dx) ^ 11 0 11« 11 λ | \m(F)

thus, / G L\S x S, m x I λ I) and hence

is m-measurable on S. It follows that τ is m-measurable on F for
each compact FaS; hence, τ is measurable on S.

Let λ, μ e L\Sy m) with fc(λ) ^ 0, then

h(X)\φ)μ(dx) = \h(x*X)μ(dx)

= II \

= \\

= \0(t)(X*μ)(dt) = h(X*μ) = h(X)h(μ)

Hence

h(μ) =

for all μ 6 LX(S, m).
Let S be a locally compact abelian topological semigroup satisfying*.
(1) S is a union of disjoint locally compact subsemigroups

{Sa : ae/}, J an index set, such that if a, βel then there is a Xe J
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such that SaSβ c Sf, and
(2 ) on each Sα, there exists a nonnegative regular Borel measure

ma such that (i) if EczSa and ma(E) = 0 then ma(Ex~ι n S«) = 0 for
all xeSa, (ii) if i*7 is compact and FaSa then ma(F) < oo, (iii) if [/
is open in Sα then ma(U) > 0 and (iv) if SaSβ c Sp then for each y e Sβ

the mapping 0{a>β,y)] Sa —>Sβ given by 0{a,β,y)(x) = xy is measurable
i.e. E m^-measurable in Sβ implies 0~a

1

β>y)(E) mα-measurable in Sa for
all y e Sβ), and

(3) a measure m is defined on S by (i) E a S is measurable if
and only if E f] Sa is mα-measurable for all a el, and (ii) m(ί£) =
Σ ma(E Π Sβ).

THEOREM 3.4. Let S and m be as above. If Lι(S, m) is a
subalgebra of M(S) such that x^L1(S, m) c L\S, m) for each xe S, then
there is a one to one correspondence between the m-measurable
characters on S and the multiplicative linear functionals on L1(S, m)
as in (3.3).

Proof. Let τ be any m-measurable character on S and for

μ e L\S, m) set h(μ) = \ τ(x)μ(dx). Then h is a bounded linear func-
J s

tional on L1(S, m) and since τ is a homomorphism for any μ, v e L^S, m),

S ec r

τ(y)v(dy) = 1 I τ(xy)μ(dx)v(dy) = I τ(z)(μ*v)dz
S J SJ S J S

thus h(μ)h(v) = h(μ*v) and h is a multiplicative linear functional.
On the other hand, let h be a multiplicative linear functional on

L\S, m), then h \ L\Sa, ma) is a multiplicative linear functional on
L1(Sa, ma) and the corresponding character on Sa is mα-measurable by
(3.3). If μeL'iS, m) such that h(μ) Φ 0 then τ(x) = h(x*μ)/h(μ) is a
character on S and is independent of the choice of such a μ. Fur-
ther, if h/L\Sa, ma) Φ 0 then τ agrees with τa (the mα-measurable
character induced via 3.3)) on Sα. In order to show that τ is m-
measurable, it suffices to show that τ \ Sa is ma-measurable for all a. It
is clear that if τ \ Sa

 Ξ 0 then τ is mα-measurable on Sa. Let τ | Sa Φ 0,
then there is a /9 such that Λ | L\Sβ, mβ) Φ 0 and hence a μ e ί/^S^, m )̂
such that Λ(//) ^ 0, h(x*μ) Φ 0. Now the support of x*μ c Sv for
some 7 (i.e. that 7 such that SαS^ c Sy). It follows that there is a
7/ G Sy such that τ(2/) =̂  0. Now for each x e Sa, τ(x) = τ(xy)/τ(y) and
hence is measurable on Sa since τ is measurable on Sy and multiplica-
tion by y is measurable by (2) (iv).

As in the last part of (3.3), h(μ) = \τdμ for all μ e L^S, m).
We note that in order to identify S* as the union of the Si, we

must be able to show that the m-measurable characters are all ex-
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tensions of m^-measurable characters on Sa's and that each ma-
measurable character on an Sa has an extension to an m-measurable
character on S. In a subsequent communication on duality in semi-
groups, we prove that this happens for compact regular abelian semi-
groups and for locally compact regular abelian semigroups satisfying
the first axiom of countability.

Let S and m be as given preceding (3.1) and let &* denote the
Jacobson radical of L\S, m) [3, 4].

LEMMA (3.5). The radical &> consists of all μ e L\S, m) such

that \τdμ = 0 for all τ e S * . In particular, L\S, m) is semisimple

if and only if for each μeL\S,m), there is a τ e £ * such that

\τdμ Φ 0 .

Proof. Since the identically 1 function is an element of S*,L\S, m)

is not a radical algebra ί μ: \dμ = 0 is proper regular maximal ideal\

The present lemma thus follows from (3.3) and known results.

THEOREM (3.6). Let S and m be as above and let S have an
identity element 1. Then S* separates points of S if L^S, m) is
semisimple.

Proof. If a and be S and are such that τ(a) = τ(b) for all τe S*f

then h(a*μ) = h(b*μ) for all multiplicative linear functionals h and
all μ e L:(S, m). Let W and V be open sets in S having compact
closure with aeW, δe F, Vf] W = 0 . The identity 1 of S is in
Wa-1 Π Vb~\ which is open by (2.2). Let U be open with U com-
pact and l G ί / c Wa~λ n Vb~\ Since m(U) > 0 and m(U) < oo, the
measure μ = m\U and 0 on S\Z7 is an element of L^S, m). It fol-
lows that (a*μ)(aU) = μ(ar\aU)) = μ(ar\aU) V[ U) = μ(U) = m(ϋ)
since a~\aU) 3 U by (3.2), 2(α). and

(b*μ)(aU) = μ{b~ιaU) = m(b~\aU) Π U) .

If yeb-\aU){\U, then i/6eαϊ7cTF and | / k F , but Vf)W=0
hence fe^αί/Π U = 0 so (b*μ)(aU) = 0. Now Z/(S) is semisimple
so a*μ = b*μ and thus m(ϊ7) = 0, a contradiction. Hence, S* se-
parates points of S.

The converse of the above theorem seems to be very difficult.
However, the converse is true for certain semigroups. This will be
presented in a forthcoming paper on L1 algebras of semigroups and
duality theorems.
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The extension of the above theorem to certain semigroups satisfy-
ing the hypotheses preceding (3.4) can be obtained and will also be
presented in a forthcoming paper.
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