Pacific Journal of Mathematics

FIXED POINTS IN A CLASS OF SETS

D. R. SMART

Vol. 23, No. 1 March 1967

FIXED POINTS IN A CLASS OF SETS

D. R. SMART

THEOREM. A set of the form $X = A \cup \bigcup_{i \in J} B_i$ has the fixed point property if

- (i) A is a closed simplex and each B_i is a closed simplex;
- (ii) $A \cap B_i$ is a single point p_i for each i;
- (iii) any arc in X joining a point in some B_i to a point in $X-B_i$ must pass through p_i .

(J can be any index set. The topology on X can be given by any metric satisfying (i) and (iii).)

The statement that X has the fixed point property means that each continuous mapping of X into X has a fixed point. The theorem applies to many sets which are not locally connected so that even Lefschetz's fixed point theorem is inapplicable. Instead of assuming that the subsets A and B_i are simplices we could merely assume that each of these subsets is locally arcwise connected and has the fixed point property. The result should still be true if each point p_i is replaced by a simplex P_i but this generalization would require altogether different methods.

Proof of the theorem. Let T be a continuous mapping of X into X. We distinguish three cases.

Case 1. Suppose $Tp_i \in B_i - \{p_i\}$ for some i. Then we will show that T has a fixed point in B_i .

Define

$$S: B_i \rightarrow B_i$$
 by $Sx = Tx$ if $Tx \in B_i$ $Sx = p_i$ if $Tx \notin B_i$.

Then S is continuous by Lemma 2 below.

Since B_i has the fixed point property, Sx = x for some x in B_i . Now $x \neq p_i$ (for $x = p_i$ would give $Sp_i = p_i$, impossible since $Sp_i = Tp_i \in B_i - \{p_i\}$). Thus $Sx \neq p_i$ so that Tx = Sx = x.

Case 2. Suppose $Tp_i = p_i$ for some i. Then p_i is a fixed point.

Case 3. Suppose $Tp_i \in X - B_i$ for all i. Then we will show that T has a fixed point in A. Define $R: A \to A$ by

$$Rx = Tx \text{ if } Tx \in A$$
.

$$Rx = p_i$$
 if $Tx \in B_i$.

Then R is continuous by Lemma 2. Since A has the fixed point property, R has a fixed point in A. The fixed point ξ cannot be a point p_i since $Rx = p_i$ only if $Tx \in B_i$; and $Tp_i \notin B_i$. Since the fixed point is not p_i , $T\xi \notin B_i$. Thus $T\xi \in A$ so that $T\xi = R\xi = \xi$.

Thus in each case T has a fixed point, which proves the theorem. The above proof depends on two lemmas.

LEMMA 1. If z(t) is a continuous function on [0,1] to a metric space and either

- (i) w(t) is a constant, or
- (ii) $w(t) \equiv z(t)$ except on a non-overlapping sequence of intervals $[t_{2n-1}, t_{2n}]$ $(n \ge 1)$ such that

$$t_1 = 0 \ and \ w(t) \equiv z(t_2) \ on \ [t_1, t_2]$$

 $t_4 = 1 \ and \ w(t) \equiv z(t_3) \ on \ [t_3, t_4]$

and for n > 2, $z(t_{2n-1}) = z(t_{2n})$ and $w(t) \equiv z(t_{2n})$ on $[t_{2n-1}, t_{2n}]$. Then w(t) is continuous on [0, 1].

Proof. Obvious. (One proof is:if z_n is the function obtained from z by changing its value to that of w on the first n intervals, then z_n is continuous. Also $z_n \to w$ uniformly on [0,1] since the length of $[t_{2n-1}, t_{2n}]$ must tend to 0.

LEMMA 2. Let Y be a closed simplex contained in a metric space X. Suppose that X - Y is the union of disjoint sets Z_i , that $Z_i \cap Y$ is a one-point set $\{q_i\}$, and that any path from a point in a Z_i to a point in $X - Z_i$ must pass through q_i . Let U be continuous on Y X. Define T by

$$Ty = Uy \ if \ Uy \in Y$$

 $Ty = q_i \ if \ Uy \in Z_i$.

Then T is continuous.

Proof. If $y_n \to y$ in Y we must show that $Ty_n \to Ty$. Consider a path g(t) in $Y(0 \le t \le 1)$ such that g(0) = y and $g(1/n) = y_n$. Writing Ug(t) = z(t) and Tg(t) = w(t) the conditions of Lemma 1 are satisfied. For if w(t) differs from z(t) the possibilities are: z(t) could be in some Z_i for all t, in which case w(t) is a constant; otherwise, there is an initial interval $[0, t_2]$ where z(t) is in some Z_i , and/or some intermediate intervals $[t_{2n-1}, t_{2n}]$ where z(t) is in some $Z_{i(n)}$ and/or a final interval $[t_3, 1]$ where z(t) is in some Z_j . By Lemma 1, w(t) is continuous. Thus $Tg(1/n) \to Tg(0)$ as required.

The theorem can be used to establish some pathological examples. (It seems that all of these are already known.)

I. There exists a noncompact set having the fixed point property.

Take

$$A = \{(x, y) : 0 \le x \le 1, y = 0\}$$

 $B_n = \left\{(x, y) : x = \frac{1}{n}, 0 \le y \le 1\right\}.$

(In this case \overline{X} also has the fixed point property.)

II. There exists an unbounded set having the fixed point property. Take A as above.

$$B_n = \left\{ (x, y) : x = \frac{1}{n}, 0 \le y \le n \right\}.$$

III. There exists a set with the fixed point property whose closure lacks this property. Take X as in II.

IV. There exists a precompact set with the fixed point property, whose closure lacks this property.

Take

$$egin{align} A &= \left\{e^{i heta}: rac{\pi}{2} \leq heta \leq 2\pi
ight\} \ B_n &= \left\{\left(1+rac{ heta}{n}
ight)\!e^{i heta}: 0 \leq heta \leq rac{\pi}{2}
ight\}$$
 .

Several sets which have some interest in other contexts have the fixed point property in consequence of our theorem:-

V. The set

$$A \cup igcup_{n=1}^\infty B_n \cup igcup_{n=1}^\infty C_n$$

where A is the unit interval, B_n is a unit line segment sloping up from (0,0) with slope 1/n, and C_n is a unit line segment sloping up to (0,1) with slope 1/n. (This is a non contractible set.)

Received August 10, 1966.

University of Cape Town, Rondebosch

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN

Stanford University Stanford, California

J. P. Jans

University of Washington Seattle, Washington 98105 J. Dugundji

Department of Mathematics

Rice University

Houston, Texas 77001

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 23, No. 1

March, 1967

M. J. C. Baker, A spherical Helly-type theorem	1		
Robert Morgan Brooks, On locally m-convex *-algebras	5		
Lindsay Nathan Childs and Frank Rimi DeMeyer, On automorphisms of			
separable algebras	25		
Charles L. Fefferman, A Radon-Nikodym theorem for finitely additive set			
functions	35		
Magnus Giertz, On generalized elements with respect to linear			
operators	47		
Mary Gray, Abelian objects	69		
Mary Gray, Radical subcategories	79		
John A. Hildebrant, On uniquely divisible semigroups on the two-cell	91		
Barry E. Johnson, AW*-algebras are QW*-algebras	97		
Carl W. Kohls, Decomposition spectra of rings of continuous functions	101		
Calvin T. Long, Addition theorems for sets of integers			
Ralph David McWilliams, On w*-sequential convergence and			
quasi-reflexivity	113		
Alfred Richard Mitchell and Roger W. Mitchell, Disjoint basic			
subgroups	119		
John Emanuel de Pillis, Linear transformations which preserve hermitian			
and positive semidefinite operators	129		
Qazi Ibadur Rahman and Q. G. Mohammad, Remarks on Schwarz's			
lemma	139		
Neal Jules Rothman, An L ¹ algebra for certain locally compact topological			
semigroups	143		
F. Dennis Sentilles, Kernel representations of operators and their			
adjointsadjoints	153		
D. R. Smart, Fixed points in a class of sets	163		
K. Srinivasacharyulu, Topology of some Kähler manifolds	167		
Francis C.Y. Tang, On uniqueness of generalized direct decompositions	171		
Albert Chapman Vosburg, On the relationship between Hausdorff dimension			
and metric dimension	183		
James Victor Whittaker, Multiply transitive groups of transformations	189		