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Goldberg and Bishop have shown that a homogeneous
Kihler manifold of positive holomorphic curvature is iso-
metric to the complex projective space with the usual metric.
The aim of this note is to prove that such a Kihler manifold
is isomorphic to the complex projective space.

We recall that a compact Kahler manifold M of positive (resp. nega-
tive) holomorphic sectional curvature is always algebraic by a well-known
theorem of Kodaira since its Ricci curvature is positive (resp. nega-
tive) [5]. The positively curved compact Kahler manifolds are simply-
connected (cf p. 528, [3]) and their second Betti number b, is equal to
one [2]. In §2, we prove that the first Betti number b, of a nega-
tively curved compact Kidhler surface is always zero.

In what follows, we assume that M is homogeneous and its group
of automorphisms acts ¢ffectively; recall that a homogeneous Kiahler
manifold is complete.

THEOREM. A homogeneous Kahler n-manifold M of positive holo-
morphic curvature is isomorphic to PC,.

Proof. It is well-known (p. 527, [3]) that a complete Kghler
manifold M of positive holomorphic curvature is compact and is simply-
connected; moreover, its second Betti number is 1 [2] and its Euler-
Poincaré characteristic E is positive (Theorem 2, [9]). Thus we may
assume that M = K/L is the quotient of a compact semi-simple Lie
group by a closed subgroup by a well-known theorem of Montgomery.
It is well-known that L is of maximal rank in X and K has trivial
center, Moreover, L is the centralizer of a l-parameter subgroup of
K [9]. We first prove that K is simple; in fact, let us assume that
K=K, x .-+ x K, with K, compact, connected and simple. Since
L is of maximal rank, we have L = L, X --- x L,, where L,C K,
1=1,2,--.,m. Thus M = [[*(K,/L;) which is impossible in view
of the fact b,(M) = 1. Consider now the fibration of K onto K/L
with fibre L; since K is simple, the transgression defines an isomor-
phism of HYL) onto H*K/L) where the cohomology is taken with
real coefficients. But H'(L) is isomorphic to the center of L; since
b(K/L) = 1, we see that the center of L is of dimension one. K
being effective, the isotropy representation of I is faithful and hence
the linear isotropy group is irreducible; consequently K/L is irreducible
hermitian symmetric (cf., p. 52, [4] and [8]). But the only irreducible
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compact hermitian symmetric space of positive holomorphic curvature
in the list of F. Cartan is the complex projective space.

REMARK. In fact we have shown above the following more general
result: Let M be a compact, simply-connected homogeneous complex
manifold whose Euler-Poincaré characteristic is positive; if its second
Betti number is one, then M is isomorphic to an irreducible hermitian
symmetric space (cf. Théoréme 1, C.R.A.S. Paris 252, pp. 3377-3378
(1961), and [6]).

2. Let D be an irreducible symmetric bounded domain of one
of the following types: I,,.. (m >m' > 6), Il, (m >17), II, (m >17)
or IV. If M is a compact quotient of D by a properly discontinuous
subgroup of automorphisms of D, it is well known that b,(M) =0
and b, (M) = 1. In fact, we have the following result essentially due
to Remmert-Van de Ven (cf. p. 456, [7]):

ProrosrTioN 1. Let M be a compact Kidhler manifold of dimen-
sion greater than one; if b, = 1, then its first Betti number is zero.

Proof. Suppose that b, = 2¢,q = (M), is positive; let A(M)
denote the Albanese manifold of M and let ¢: M — A(M) be the non-
constant holomorphic onto projection. Since b, = 1, we have h*°(M) = 0
and hence M is algebraic by Kodaira’s theorem. Therefore dim M =
dim A(M) by Theorem 1.3 of [7]; let @w be a nonzero holomorphic 2-
form on A(M); then ¢*® is a nonzero holomorphic 2-form on M, a
contradiction.

In fact, we can prove the following result for negatively curved
Kiahler surfaces which generalizes a result of [3]:

PROPOSITION 2. Let M be a compact Kdhler surface of negative
Ricei curvature; then its first Betti number is zero.

Proof. Since the Ricei curvature is negative, we have HM,
2(K) =0 if p+q=1 by a result of Akizuki-Nakano [1]; con-
sequently, HY (M, 2%(K)) = H*(K) = 0 by Dolbeault’s theorem. But
H(K) = H"*(M, K® K*) = H*(M, 1) where 1 denote the trivial line
bundle, by the duality theorem of Serre. Thus A% = dim H*(M,1) =0
and hence b, = 0.

REMARK. Note that the Euler-Poincaré characteristic of such a
surface is positive (cf., [3]).
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