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A. C. VOSBURG

The definitions of the Hausdorff dimension dim;, X, upper
metric dimension dim X and lower metric dimension dim X
of a metric space X all depend upon asymptotic characteristics
of diameters of sets in covers of X, We relate these notions.
First we note that dim; X < dim X holds for all totally bounded
metric spaces X, while on the other hand there exist perfect
subsets A of [0, 1] satisfying dim;, A =0 and dim A =1 = dim
[0,1]. Finally we show that there exist perfect subsets S of [0, 1]
which satisfy dim, S=0 and dim S=1 even when strong
local conditions are imposed.

The notions of Hausdorff dimension (see 1,2) and metric dimen-
sion (see 5 p. 296, 8) are closely related; in fact most compact metric
spaces encountered in analysis have the same Hausdorff and metric
dimensions. In this paper we investigate some aspects of the rela-
tionship between these two concepts.

By the Hausdorff dimension of a subset F of a metric space is
meant the number dim, E = sup{p: p}(E) = + <}, where pi(E) is
defined to be + o if p = 0 and p}(E) = sup... UE, p; ¢) if »p >0,

(1) U(FE, p; €) = inf {i‘” (diam E))*: E c J/{sE;, diam E; < ¢ for each
=1
=12}

For each totally bounded subset A of a metric space (i.e. each
subset which for each ¢ > 0 can be covered by a finite number of sets
of diameter not exceeding ¢) the upper metric dimension dim A and
lower metric dimension dim A of A are defined as follows (all loga-
rithms have base 2):

(2) dim 4 = @(log N.(A))/log(e™)
and
(3) dim A = lim (log N.(4))/log(e™) ,

&0+

where, for each ¢ > 0, N(A) denotes the smallest number of sets in
any cover of A by sets of diameter not exceeding 2¢. It is customary
(see 5, p. 280) to abbreviate log N.(A) by H.(A); this function has
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been called (see 5, p. 280) the c-entropy (or metric entropy) function
of A, When dim A ='dim A this common value is called the metric
dimension of A and denoted dim A. The asymptotic behavior of H,(A)
as ¢ — 0 + in some sense reflects the massiveness of A4, and various
applications of this notion have appeared in recent years (see 3, 5, 7, 10).
For a tour of the subject of metric entropy see Lorentz (6, 7).

We will use the elementary inequality N.(4) = M,.(4) which is
valid (see 6, p. 151) for all totally bounded sets A, where M, (A4)
denotes, for each ¢ > 0, the maximal number of points in any subset
S of A having the property that each pair of points of S are separ-
ated by distance greater than e,

dim A < dim A < dim A being obvious whenever meaningful, we
wish to further compare dim, A, dim 4, dim A4, dim 4, and investigate
some related questions, First (Theorem 1) we will note from elemen-
tary considerations that the inequality

(4) dim, A < dim A

holds for each totally bounded subset A of a metric space. On the
other hand we will note that there exist (even perfect) subsets A of
[0, 1] for which

(5) dim, A = 0and dim A = dim[0,1]=1.

Our main result (Theorem 2) involves looking more deeply into the
relationship between (4) and (5) by imposing certain additional local
conditions.

2. THEOREM 1. Let A be a totally bounded subset of a metric
space X. Then A satisfies (4).

Proof. Let dimA = s =0, and assume ¢ > 0. By the definition
(3), there exists a sequence ¢, ¢,, --- which decreases to zero such
that log N, (4) < (s + 0) log (¢3), and hence N, (A4) < (1/¢,)** for each
n=1,2,--.. This implies the existence of a family of no more than
(1/e,)**® sets of diameter not exceeding 2¢, which covers A. Taking
¢ = 2¢, in the infimum [ in (1), this yields

UA, p; 28,) = (1/e,)* (2, < 2?ifp=s+ 4.
Hence pf(A)<2*< + «ifp=s+ 9, which, as desired, implies

dim, 4 < s.

While Theorem 1 states that the Hausdorff dimension of a compact
set A must be small if the s-entropy of A approaches + « sufficiently
slowly, i.e., if dim A is small, it is natural to ask what can be said
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in the converse direction. Quite elementary considerations show that
the reverse inequality need not hold. In fact, it is easy to construct
(even perfect) sets A of real numbers for which (5) holds. For ex-
ample the range R of the sequence {a,} defined by

a, =10, a, =a,_, — 1/(klog*k)ifk > 1

satisfies (5), and R can be used to build a perfect set satisfying (5).
An example is any perfect set A defined by 4 = Uiz 4, U {lim,_... a,},
where each set A4, is taken to be a perfect set satisfying

dimh Ak = 0y inf Ak > ak+1 + (1/2)(ak —_ a/k+1) fOI‘ k = 1, 2, s
and
sup 4, < a,_; — (1/2)a,_, — a,) for k = 2,3, ---.

While in a sense this answers the converse gquestion to Theorem
1, much is left to be desired, for the largeness of dim A is really a
consequence of that of dim R, and R is only a countable set. We
show that the differences between the notions of Hausdorff and metric
dimensions run deeper than might be suggested by the above. To do
this we introduce the notion of the metric dispersion of a totally
bounded subset of a metric space.

DEFINITION 1, Let A be a totally bounded subset of a metric space
and let x,€ A. Then by the upper metric dimension of A at z,, denoted
dim (4, «,), is meant the number

Fm (4, z) = inf {mn—HE(A N U)flog (): Us U(xo)}, where U(@,)
e—0+
denotes the class of open neighborhoods of z,.

DEFINITION 2. By the metric dispersion of A, denoted disp A4, is
meant disp A = inf, ., (dim (4, x,)).
THEOREM 2. There exist perfect sets S of real numbers satisfying

(6) dim, S =0 and dispS =1.

Proof. Abbreviating 2° by exp a, we let

(7) 0, = 1,0, = exp{— (n!)}
&, = exp {—n((n — )%}
m, = exp{(n — 2)((n — DY}, n=2,3, .-,

For each n = 3, 4, --- and each closed interval I = [a, b] of length at
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least d,_,, we denote by F(I; n) the subset of I which is the union
of all intervals of the family

Sy m) = {la + 90, + &,),a+1(0, + &)+ 0,]:t=01-+,m, —1}.
From (7) it follows that

0y < &4\
and

mn(an + 8%) é 2mnsn é an-—-l ’

so indeed F(I; n) is contained in I. Further, for each I and m, the
distance between any two intervals of (I;n) is no smaller than e,,
and the distance between any pair of left end points of intervals of
J(; n) is no smaller than 4§, + ¢, > ¢,.

Now we can define the desired set S as a generalized Cantor set.
Let the sequence {A4,};> of sets be defined by

A, =10,1], A, = U {F(C;n): Ce A, }if n =2,

where, for each n =1,2, --., A, denotes the family of all component

intervals of A, (the components of each A, are intervals of length 4,).
For S we take S = N3 A4,.

Since each A, has [[?., m, components, each of length d,, to prove
that dim, S = 0 it suffices to observe that from (7) it follows that

lim {(T1%-, m,)d%} = 0 for each » > 0.
n—r4oco

To establish disp S = 1, we consider any open interval I such
that SN I is nonempty, and estimate N,(S N I) from below. If » is
sufficiently large, I contains a component interval [¢,d] of A,_,, and
hence also contains all intervals of J([¢, d]; n). If we let C denote a
cover of FY([c,d]; n) by sets of diameter not exceeding 2¢, e = (1/2)¢,,
then C covers also the set of left end points of the intervals of

(e, (I]; n), and no covering set among the sets of C covers more than
one such endpoint. Hence the number of covering sets of the family
C cannot be less than m,. This implies that

(8) Ne,o(SNI)zm,
holds for all sufficiently large ». Since (7) implies that

(log m,)/log (2/¢,) = (n — 2)((n — DI/(n((n — D!)’) —1asn— + o,
we have, from (8),

ImN.(SNI)log(c)=1.
e—04
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Since this limit superior cannot be greater than 1, we have disp S = 1,
which completes the proof of the theorem.

It remains an open question whether there exist perfect sets S
satisfying dim, S = 0, dim (S, 2) > 0 for all (or at least most, in some
sense) of the points « of S, where dim (S, x) is defined analogously to
dim (S, ) in Definition 1.

In conclusion we mention that Theorem 2 leaves open the question
as to whether for two sets A, B with dim, A < dim, B any inequality
necessarily follows for disp A, disp B. The answer is in the negative;
that is, for each w, 0 < w < 1, there are perfect sets A, B of real
numbers such that dim, A < dim, B = w and w = disp B < disp 4 = 1.
This follows from Theorem 2 together with the fact that for each
w, 0 < w < 1, there exist compact perfect sets B such that dim, B = w
and H.(B) ~ wlogl/e. Such sets B are constructed in Hausdorft’s

paper (see [1], §10).

The author is very much indebted to his teacher, Professor George
Lorentz, for helpful conversations concerning this paper.
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