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A group G of homeomorphisms of a topological space X
onto itself is called n-transitive if any set of # points in X
can be mapped onto any other set of » points by some member
of G. In this paper, we investigate the tranmsitivity of G
when X is euclidean m-space E™ or real projective m-space
II™, and G properly contains the group A, of affine transfor-
mations or the group P, of projective transformations,
respectively. We show that G o A, implies that G is at least
3-transitive, G > P, implies that G is at least 4-transitive,
and, for a fairly wide class of groups, G is n-transitive for
every n. For higher dimensional spaces, our information is
considerably more meager. We show that G A, or GD P,
implies that G is at least 3-transitive, and that if some
member of G leaves fixed the points of some open set, then
G is n-transitive for every .

2. Multiple transitivity, Let X be a topological space and
H(X) the group of all homeomorphisms of X onto itself. The identity
of H(X) will be denoted by e¢. For each he H(X), we set K(h) =
{x e X: h(x) = x}, and observe that

K(h.h;) D K(hy) N K(hs) ,  K(Rihshi?) = hi(K(hy))

For any subgroup G of H(X) and any x € X, we call G(z) = {g(x): g € G}
an orbit of G and note that orbits are either coincident or disjoint.
When 7 is a positive integer, we define G to be n-transitive if, for
any subsets {x,, ---, .}, {%,, -+, ¥} of n distinct points in X, we can
find g€ G such that g(z,)) =y; ¢ =1, ---,n). If g is unique, we call
G strictly n-transitive. If G is n-transitive for every n, we will call
G w-transitive. When X is a connected, locally euclidean manifold of
dimension m = 2, then H(X) is clearly w-transitive, but H(E") is only
2-transitive, and H(II') is only 3-transitive under the above definition.
To remedy this, we will modify the definition in these two cases by
requiring that as 4 increases from 1 to #,x; should move in the
positive sense of orientation, and y, should move in either the positive
or negative sense. Thus H(X) is also w-transitive when X = E* or
II', The group H+*(X) of orientation-preserving homeomorphisms of
X evidently sends any positively oriented =n-tuple into any other
positively oriented n-tuple for every n. We will say that a subgroup
G of H*(X) is n-transitive relative to H*(X) if G sends any positively
oriented wm-tuple into any other positively oriented =-tuple.
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LEMMA 1. Let X be a topological space and G a subgroup of
H(X). Suppose that, for each subset L of n points in X and each
xeX — L, the orbit Gy(x) of the group G, ={gecG: L K(9)} has a
nonempty interior in X. Then Gx) contains a connected component
of X — L.

Proof. Let U < Gy(x) be an open subset of X, and ye Gy (x) be
arbitrary, Then we can find ¢, g,€ G, with the properties g,(x)e U
and g,(x) = y. Thus y = g,(x) € 9,97 (U) C Gy(x), and y lies in the
interior of G,(x), so that G,(x) is open. The orbits of G, are either
coincident or disjoint, and no two of them can intersect the same
connected component of X — L unless they coincide. Since e¢e G,, we
have z ¢ G,(x), and the orbits Gy x) cover X — L. Hence, each of
them contains a connected component.

LEMMA 2. With the same hypotheses as in Lemma 1, suppose
X is a connected, locally euclidean manifold of dimension m = 2,
and G is n-transitive for some n. Then G is (n + 1)-transitive.

Proof. To show that G is (n + 1)-transitive, it is evidently
sufficient to show that, for any points «;, *++, .11, Yusr: € X, there is a
ge G satisfying g(x;) =2; (¢ =1,---,m) and g(Z,) = Yp+1. Since
X — {x, -+, x,} is connected, this is precisely the conclusion of
Lemma 1.

LEMMA 3. With the same hypotheses as in Lemma 1, suppose
X = E*, G is n-transitive for some n = 2, and the condition “xe X—L”
18 replaced by “x lies to the right of L. Then G is (n + 1)-transitive.
If Gc H*(EY) is n-transitive (n = 0) relative to H(E'), then G 1is
(m + 1)-transitive relative to H(E").

Proof. Let x, < --- < x,4, and either (i) ¥, < +-+ < Y, or (ii)
Y > -+« > Y, be given. In case (i), we choose g, € G so that g,(z;) = ¥
(t=1,...,n). Since g, is order-preserving, we have ¢,(%,+) > Y.,
and the same argument as in the proof of Lemma 1 shows that the
orbit Gy(g,(%,,)) is the open interval (y,, <), where G, = {geG:
{¥1, *++, ¥} C K(9)}. Thus we can find g,¢ G, satisfying g,(¢:(%.+,)) =
Yur1, S0 that g,0(x) =9, ¢ =1,..., %+ 1). This also suffices to
prove the last statement in the Lemma. In case (ii), we choose g, ¢ G
so that gi(x)) =y; @ =2,---,n +1). From n =2 we infer that g,
is order-reversing, whence gy(%,) > ¥,, and we can find g,€ G satisfy-
ing ;e K(g.) 61 =2,---,mn+ 1) and g(g:(x,)) = 9. Thus g,9:;) = y;
(i=1,+-,n+1).
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If, in the hypothesis of Lemma 3, “x lies to the right of L” is
replaced by “x lies to the left of L”, then an argument similar to
the preceding one yields the same conclusions.

3. Extensions of finite sets, Let L be a finite subset of an
arbitrary subset M of a topological space X, and G a subgroup of
H(X). We set M,= M and, for ¢+ = 0,

M, =U{g(M) U g (M;): ge G and g(L) < M} .

Since ec G and L c M,, we have M, c M, and, in general, M,c M,,,.
Thus {M;} is an increasing family of sets, and we shall call its union
N the extension of M with respect to L and G. We observe that if
geG and g(L)c N, then g(N) = N. For g(L) is finite and so is
contained in some M,, whence g(M,)c M, and ¢~ '(M,)c M,,, for
each 7 > k. Hence, g(N)C N, g (N)C N, and g(N) = N.

LemMMA 4. Suppose X is a Hausdorff space, L has n points, G
18 n-transitive and has the property that, for any net {g,} in G and
any g€ @, lim, g.(x) = g(x) for all xe L tmplies

limgi(@) = g(z),  limgi*(x) = g7(2), reX.
Then g(L) c N implies g(N) = N, where N is the closure of N.

Proof. If L = {a*, --+,%"} and g(L)c N, then we can find a net
{(x}, ++-, x})} of m-tuples in N such that lim,x} = g(x®) (2 =1, -+, m).
The n-transitivity of G implies that there are elements g, ¢ G satisfy-
ing g,(x°) = ai for each 7 and k. Thus

li,fn g(2?) = H,fn xh = g(x') 1=1,--+,m

implies
lim gy(2) = g(2) ,  lim g*(z) = ¢7(2) velX.
From the remark preceding the lemma, g,(L)C N implies g.(x),

g7l (x) e l\_/' for_x € 1\_7 , whence gﬁx), g x) e JST for xe N. Consequently,
9(N)C N, g(N)C N,g(N)C N, g(N)c N, and g(N) = N.

LEmMMA 5. Let X be m-dimensional euclidean space E™, G the
group A, of affine transformations defined on E™, L consist of m + 1
points which do not lie on any (m — l)-dimensional hyperplane, and
M o L consist of m + 2 points. Then N is dense in E™.

Proof. We recall that the elements ¢ of A, have the form
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a(x) =t + Tz, where te E™, and T is a nonsingular linear transfor-
mation of E™ onto itself. Moreover, A, is strictly (m + 1)-transitive
on (m + 1)-tuples which do not lie on any (m — 1)-dimensional hyper-
plane. We first consider the case m = 1. The hypothesis of Lemma
4 is clearly satisfied with » = 2. Let L = {x,, 2,} and M = {x,, x,, x}.
Evidently we can arrange the indices so that either (i) x, < x,, %, < @,
or (iiy x, > x,, #;, > x,. We will complete the proof for case (i); case
(ii) is handled in exactly the same way. Choose a, € 4, so that a,(x,) ==,
and ax,) = ;. Then a,(L)c N, and the remark preceding Lemma 4
implies that a,(N) = N. Indeed, af(N) = N for any integer k, where
a¥ is the k-th iterate of a,. Now a, is order-preserving and has just
one fixed point at x;, so that {af(x,): — o < k < + =} has x, and +
as limit points. In other words, N contains a sequence which con-
verges to x, from the right and another which converges to -+ oo,
If N = E', then E* — N is the union of disjoint open intervals. Let
I = (\, ) be one of these, where we allow N = —o or g = +oo,
If M % — oo, we can find a, € A, satisfying a,(@,) = » and A < a,(x,) € N,
whence a, is order-preserving, a,(L)C N, a,(N)=N, and a;"(I)cE*—N.
But ¢;’(n) is the left endpoint of a;'(I), while a;'(\) = 2, has a
sequence in N converging to it from the right, so that part of this
sequence must lie in a;*(I), which is impossible. If A = — o, then
@ < &, and we choose as;c€ A, so that ax,) =, , < as(x,) e N, and
as(%,) < ®,. Thus a, is order-preserving, a,L)C N, ayN) = N, and
a()c E* — N. But ay () > g, and ay(¢) is the right endpoint of
ai(I), whence p ¢ ay(I), which is impossible, Therefore, N = E*.

We now proceed by induction on m. Suppose the lemma has been
proved in all dimensions less than a certain m,

L= {xly "'yxm+1}c{x09 X1, ""xm—H} =McCE™ ’

and L does not lie on any (m — 1)-dimensional hyperplane. We can
arrange the indices in I, so that either (i) x, lies on the (m — 1)-
dimensional hyperplane X determined by «,, .., 2,4, or (ii) z, and =z,
lie on the same side of X. To see this, we set up a coordinate system
in E™ in which the points of L are the origin and unit points on the
coordinate axes. If each point of L lay on the side opposite x, of
the (m — 1)-dimensional hyperplane through the remaining points of
L, then all the coordinates of 2, would be negative, while z, lay on
the side opposite the origin of the hyperplane through the unit points,
which is impossible. In case (ii), choose a,e A, so that a,x) = x,
and a ;) =x; 1 =2,---,m + 1). We will show that x,, a,(x,), and
ai(x,) are collinear. Since K(a,) = X, we can refer ayx) =1, + Tix
to a coordinate system in E™ relative to which «, = (0,.--,0,1), X
is the set of points with last coordinate 0, ¢, = (0, ---,0), and 7T, has
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the form
100.-. ¢
010.-.a,
T,=1001.--a, |, a, >0
000.-.a,

Thus we have

a(x,) = (g, »+ 2, Ay, Q)

ai(®y) = (1 + ay), -+, @ 1(1 + @), az)
(X)) — Xy = (X, +o o, Uy, Oy — 1),

ay(x,) — ay(x) = (e, ++ -, Ao, (@, — Da,)
Alao(2,) — @)

Il

whence z,;, a,(x,) = x,, and a¥(x,) = a(x,) = ¥, are collinear, and y, +# x,, z,.
We will show next that there is a subset L’ of M which contains
%,, &, and m — 1 of the remaining m points of L, but which does
not lie on any (m — 1)-dimensional hyperplane. If L’ = {x,, @, «--, .}
will not work, then let & be the least integer such that 2 <k <m
and {x,, «,, ---, x,} lies on some (k — 1)-dimensional hyperplane, and
set L' = M — {x,}. Now if L’ lay on an (m — 1)-dimensional hyper-
plane X, _,, then the unique (k¥ — 1)-dimensional hyperplane through
{2y, #1, -+ -, x,_,} must contain x, and lie in X, _,, so that M c X,,_,,
which is impossible. Hence, L’ = M — {z,} satisfies our condition.
Let x; be a fixed element of L' — {x,, «,}, Y be the (m — 1)-dimensional
hyperplane through L” = L' — {z;}, M"” = L"” U{y,}, and a,€ A, map
L onto L'. Since {y,, 2, x;} is collinear, and wx,, ;€ L"”, we have
M"cY. Now L"” contains m points, M” contains m + 1 points, and
the group B of elements in A, which fix #; and map Y onto itself
acts on Y exactly like A,,_,. By our induction hypothesis, the extension
N’ of M"” with respect to L” and B is dense in Y. We will show
that U M/" = N”"c N = J M; by showing inductively that M!'c N.
First, ay(L) < M implies 9, = a.(x,) € a,(M)CN, so that M, = M"cN.
Suppose now that M c N for some ¢, and b(L") © M/ for some b e B.
Then a,(L) = L' < M implies a,(N) = N, and

bay(L) = b(L') = {w;} UbL") c {z,} UM/ N

implies ba,(N) = N. Thus b(N) = b(a,(N)) = N, b(M!") U b~*(M}') C N,
and M/}, C N, so that N” C N. Suppose {y, *+++, Yn_} is 2 subset of
N which does not lie in any (m — 3)-dimensional hyperplane. Since
L" does not lie on any (m — 2)-dimensional hyperplane, we can find
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an ;¢ L” such that {x;, v, ++-, Yn_} does not lie on any (m — 2)-
dimensional hyperplane. Then {x;, z;, ¥, -+, ¥n_.} does not lie on any
(m — 1)-dimensional hyperplane, and we can find an a,€ 4, which
maps L’ onto {®;, x;, ¥, **+, Yn_} In such a way that asx;) = 2; and
ay(x;) = z;. From a.,a,(L) = ay(L') C N, we infer that a,a,(N) = N and
a(N) = ay(a,(N)) = N, so that a,(N)CN. Now a,N") is a dense
subset of a,(Y), and a,(Y) is an (m — 1)-dimensional hyperplane through
{z;} and {y:, ++*, Ym}. The union of such hyperplanes as {y,, - ++, Yn_i}
ranges over N is clearly dense in E™, whence N is dense in E™, and
our main induction step is complete for case (ii). For case (i), the
preceding argument becomes considerably simpler. We set

L" = {st ) xm+1} ’ M” = {xOy Loy * xm-)—l} ’

and let B be the set of elements in A, which fix 2, and map X onto
itself. Then N” < N, and N” is dense in X. The last part of the
argument with I = L, Y = X, and x; = z, shows that N is dense in
E™ in this case as well.

LeMMA 6., The conclusion of Lemma 5 remains valid if, in the
hypothesis, we set m = 1 and replace A, with the group Af of order-
preserving elements in A,.

Proof. We observe that all of the elements in A, which appear
in the proof of Lemma 5 are order-preserving. The only other lemma
used in that proof was Lemma 4 which assumes that G is 2-transitive.
Although A is only 2-transitive relative to H*(&"), the net {g,} can
still be found, if we recall that any pair of points which lies suffi-
ciently close to a positively oriented pair is also positively oriented.

LEMMA 7. Let X be a topological space, L consist of n points,
Lc M, fe HX), G and G’ be subgroups of H(X), and G’ have the pro-
perty that +f g' € G’ and K(¢') contains n points, then g’ = e. Suppose
that, for every ge G, there is a g € G such that fg(x) = g'f(x) for
all xe M. Then fg(x) = ¢g'f(x) for all x in the extension N of M
with respect to L and G.

Proof. We will prove the result inductively for the sets M =
M, M,, M,, ---. Suppose that, for every g e G, there is a ¢’ ¢ G’ such
that fg(x) = ¢’f(x) for all xe M;, and g¢g(L)c M,;, where g,¢G. If
ye L, then ¢.(y) e M; and

(1) f9(0:.(y)) = d'f(9.(¥)) , yelL.

We know that there are elements ¢!, ¢/ ¢ ¢ satisfying
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(2) fo(y) = i f(w),  f99.(y) = 9:5() , yeM;.
Combining (1) and (2) and recalling that L < M;, we obtain
9.1y = f99:(v) = ¢'f9.(%) = 9’91/ (W) , yelL.

Thus f(y) e K(9;7'9'9}), f(L) < K(9;7'9’91), and f(L) contains = points,
so that g;'¢'g} = ¢ and ¢} = ¢’g;. From (2) we have

J99:(v) = 9:1(%) = 9’91/ (W) = ¢'f9.(v) , yeM,,

that is, fg(x) = ¢’f(x) for all xzeg,(M;). To see that fg(x) = ¢'f(x)
for all x e g7'(M;), we observe that L c M; implies

(3) f997'(y) = 9'fo'(v) yeg(l) .
We can also find elements g¢i, gi e G’ satisfying
(4) for'(w) = 6ify) ,  foor(y) = 9iS ), yeM;.
From (3), (4), and ¢,(L) Cc M; we obtain
9:.5(W) = fo997'(v) = 9'Fo7(y) = 99 (W) , yeag(l).
Thus fo,(L) < K(g.'¢'g3) and ¢, = ¢'¢g;. Finally, from (4) we have
fo97'(w) = 9.f(y) = 99 f(y) = 9'foT’ (W) , yeM;,

in other words, fg(x) = ¢'f(x) for all xe g7*(M;). Therefore, fg(x) =
9'f(z) for all xe M,,,, and the induction step is complete.

LemMmA 8. With the same hypotheses as in Lemma T, suppose
G =G and f(x) =z for all xe M. Then f(x) =z for all xeN.

Proof. Again we proceed by induction on the sets M,;. Suppose
fx) = x for all xe M;, and ¢,(L)C M,;, where ¢g,€G. Then we can
find ¢} ¢ G such that

fo.(x) = g1f(x) = gi(x) , velM,;.
Since L, g,(L) C M;, we have
a:.(y) = fo.(y) = 9i(¥) , yelL,

whence L  K(g7'¢}) and ¢, = gi. Thus fg,(x) = gi(x) for all xe M,
that is, f(z) = z for all z¢ ¢,(M;). Similarly, there is a g; e G satisfy-
ing

for'(w) = g:f(@) = g:(2) , e M;,
C 9T (y) = for'(w) = 9iy) , yeg(l),
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so that ¢7* = g; and fg7'(x) = g7'(2) for all ® € M;. Therefore, f(z) = z
for all ze M,,,, and the induction step is complete.

THEOREM 1. Suppose X = E*, L. consists of two points, M of
three points, fe H*(E"), and, for every ac Ay, there is an a’ € Af
such that fa(x) = o'f(x) for all xe€ M. Then fe Af.

Proof. The hypotheses of Lemma 7 are evidently satisfied when
n=2 and G =G = A}, whence fa(z) = a’f(x) for all zeN. By
Lemma 6, N is dense in E*, and the continuity of a, o/, and f implies
that fa = o'f, that is, fAf7f*c Af. If we choose a,€ A} so that
a,(0) = f(0), a,(1) = f(1), and set f, =arf, then 0,1e K(f,) and
JATf < Af. In particular, if we define a,x) =1+ x for xzeE",
then a, = fia,fi'e Af. Now K(a,) = fu(K(a,)) = f(D) = @, so that a,
is also a translation, and a,(0) = 1 implies a, = a,. Thus 2 = a,(1) =
fia.f (1) = £i(2), and 0,1, 2¢ K(f). Setting M = {0,1, 2} in Lemmas
6 and 8, we conclude that f, = ¢ and f = a,c A}.

. 4. 3-transitive groups containing A4, and P,. We are now
ready to investigate the transitivity of groups of homeomorphisms of
euclidean m-space E™ or real projective m-space II™ which contain
the affine group A, or the projective group P,, respectively, as a
proper subgroup. The groups which we will consider are all obtained
by adjoining some homeomorphism to 4, or P, and generating the
smallest group containing them. Any larger group will obviously have
at least as high a degree of transitivity. In the case m = 1, we will
obtain slightly sharper results by adjoining an element of H*+(E') or
H+(IT") to Af or P, respectively, and considering transitivity relative
to H*(E') or H*(II'). Then if an orientation-reversing element of
A, or P, is added, the resulting group will clearly have the same
degree of transitivity relative to H(E*) or H(II'), respectively.

THEOREM 2, If fe HY(E'Y — A,, then the group G generated by
f and Af is 3-transitive relative to H(E?Y).

Proof. Given any three points , < , < @, in E*, let L = {x,, .}
and M = {z,, %,, #;}. For each ac Af, we can find o' ¢ Af satisfying
o'(f(x)) = fa(x)) 1 =1,2). If a(x) =a + Bx and o'(x) = o + B'w,
then a’ and 8’ must satisfy the equations

a + Bf(x) = fla + Bx) ,
a’ + B’f(xz) = f(a + 18952) ’

so that «’ and B’ are continuous funections of o and 8. We can identify
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Af with the set of pairs (a, 8) of real numbers, where 8 > 0. If we
give A the euclidean topology of a half-plane and hold x e E* fixed,
then the mapping a — a(x) or (a, 8) —a + Bz from A into E' is
evidently continuous. Since f and f—' are continuous, so also is the
mapping o — @(a) = f~'a/*fa(x;) from A7 into E'. From Theorem 1,
we know that there is at least one a,c A such that aff(x;) = fa(xs),
for otherwise fe Af, contrary to our hypothesis. Thus o(a,) # @,
while @(e) = #;. From the connectedness of A we infer that @(Af)
is a nondegenerate interval and so contains an open set. Moreover,

“‘a/*faeG and x,, x,€ K(f'a’"*fa). By Lemma 3, G is 3-transitive
relative to H*(E").

THEOREM 3. If m =2 and fe H(E™) — A,, then the group G
generated by f and A, is 3-transitive.

Proof. We know that A, maps any noncollinear triple onto any
other noncollinear triple. If we can show that G maps every collinear
triple onto some noncollinear triple, then we will have established that
G is 3-transitive. Let M be a collinear triple, L C M consist of two
points, X be the line through M, and suppose that, for every ac A4,,
fa(M) is a collinear triple. The group B of all those elements in A,
which map X onto itself behaves exactly like 4, on X, By Lemma
5, the extension N of M with respect to L and B is dense in X.
We will show by induction on the sets M, that, for every acA,,
Ja(N) is a collinear set. Suppose fa(M;) is a collinear set for each
acA,, and b(L)c M; for some be B. Then fa(b(M,)) = fab(M;) and
fa(d~(M,)) = fab~'(M,) are each collinear, and

Ja(M:) N fa(d(M:)) D fa(b(L)) ,
Ja(My) N fa(b™ (M) D fa(L)

Since fa(b(L)) and fa(L) each contain two points, the sets fa(l),
fab(M,)), and fa(b~(M,)) all lie on the same line, so that fa(M;,,) is
collinear, and the induction step is complete. From N = X we infer
that fa(X) is collinear for each ae 4,,. If Y is any line in E™, then we
can choose a,< A, such that a(X) = Y, whence f(Y) = fa,(X) is also
collinear. Since Y is closed, connected, and separated by each of its
points, the same must also be true of f(Y) so that f(Y) is a line. Let
Y., Y, be parallel lines and Z a line which meets them both. Then
Y.nY,= @, and any line which meets Z and Y, in distinct points
mush also meet Y,. Since f preserves these incidence relations, we
conclude that f(Y,) and f(Y,) are parallel. Let L’ consist of the
origin and the m unit points in a coordinate system for E™, and let
M’ be the set of 2™ vertices of the unit cube determined by L'.

(9)
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Then fa(M') is the set of vertices of a parallelotope for each ac A4,
and we can find o’ € A, satisfying fa(x) = o’f(x) for all xecM’'. If
we select a, € A4,, so that a,(x) = f(x) for all xe M' and set f, = ai'f,
then M’ < K(f,) and

fiu(x) = ar'fa(@) = ar'd'f(%) = al'd'a fi(@) , xeM .

We infer from Lemmas 5 and 8 that f, = e¢ and f = a,, which con-
tradicts the hypothesis of our theorem. Hence, fa(M) is not collinear
for some ac A,,.

The conclusion of Theorem 3 seems especially weak in view of
the fact that A,, itself is (m + 1)-transitive on subsets which do not
lie on any (m — 1)-dimensional hyperplane. The difficulty in extending
our method to higher transitivity comes from (5). If we knew, for
example, that fa(b(L)) and fa(L) each contained three points, it would
not follow that these triples were noncollinear, and we could not
conclude that fa(M,;), fa(b(M;)), and fa(b~(M;)) were coplanar.

LEMMA 9. Suppose the group F generated by Al and fe H*(EY)
is m-tramsitive relative to H*(E"). If we extend f to an element f
of H+(II') by making f fix the point at infinity, then the group G
generated by P and f is (n + L)-tramsitive relative to H*+(IIY).

Proof. An element pe P = PN H*(II') has the form p(x) =
(ax + B)/(vx + 8), where ad — By > 0. We can identify Af with the
subgroup of P;* which leaves fixed the point c at infinity. Suppose
that {x,, «--, %, and {y,, +++, ¥.+.} are given such that, as 7 increases
from 1 to » + 1, «; and y; each move in the positive sense of orienta-
tion. Choose 2, p,€ Pi* so that py(x) = = and p,(y;) = . Then
{Do(@) *+ ) Do(®ps)}y (D1(Y2), * ) D1(Yar))} C I — {oo}, and the points in
each set increase with 4. Thus we can find g, F satisfying
9o(0o(:)) = D3(¥s) (2 =2, -+-,m + 1), and ¢, = pi'g,p, € G must satisfy
g:(x:) = Y; (t=1-,n+ 1).

TaeoREM 4. If fe H+*(II') — P, then the group G generated
by f and P is 4-transitive relative to H*(II').

Proof. Let f(co) = x, and choose p,€ P/ so that py(x,) = co.
Then p,f(c0) = o, and the restriction f, of p,f to II' — {} = E*
belongs to H*(E'). Theorem 2 says that the group F generated by
fo and the set Af of those elements of P which fix « is 3-transitive
relative to H*(E"), and Lemma 9 gives the desired result.

THEOREM 5. If m =2 and fe H(II™) — P,, then the group G
generated by f and P, ts 3-tramsitive.
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Proof. Since P, maps any noncollinear triple onto any other
noncollinear triple, our result will be proved if we can show that, for
any collinear triple M, there is a p € P,, such that fp(M) is noncollinear.
Suppose that, for some collinear triple M = {x,, «,, «;} and every p € P,
fo(M) is collinear. Let X be a projective line in II™, p,€ P, map
M into X, and Q be the subgroup of P, which maps X onto itself.
We know that @ acts like P, on X and is, therefore, 3-transitive
without regard to orientation. Let xe X — {py(2,), (%)} be arbitrary,
and choose g€ @ so that {p,(,), p.(.)} < K(q) and q(p,(x;)) = . Then
fa(p(M)) and f(p,(M)) are each collinear and have two points in
common, so that f(x) lies on the projective line Y through f(p,(M)),
and f(X)CY. Since f is a homeomorphism, and X, Y are topological
circles, we must have f(X) = Y. If Z denotes the (m — 1)-dimensional
projective hyperplane at infinity, then any projective line which meets
Z in two points must lie in Z. Moreover, f(Z) must have the same
property, for f preserves incidence relations. Hence, f(Z) is a pro-
jective hyperplane, and f(Z) has dimension m — 1. If we choose
p, € P, so that p(Z) = f(Z) and set f, = pi'f, then fi(Z) = Z, and
the restriction f* of f, to II™ — Z = E™ maps lines onto lines.
Following the argument in the proof of Theorem 3, we infer that
fi* is affine, f,e P,, and fe P,, which contradicts the hypothesis of
our theorem. Therefore, fp(M) is noncollinear for some p ¢ P,.

5. w-transitive groups. So far, we have not exhibited any f
such that the group generated by f and A, is w-transitive. This we
will now do. As before, the results for the case m =1 are much
stronger than those for m > 1, and this seems to be due to the fact
that a nondegenerate connected subset of E*® has a nonempty interior.
The conditions which we shall impose on f all have to do with its
fixed point set and require, at the very least, that this should have
a nonempty interior.

THEOREM 6. Suppose fe H*(E"), f + e, and K(f) contains a half-
line. Then the group G generated by f and the set B of all trans-
lations in A5 is w-transitive relative to H(EY).

Proof. Let 2, < .-+ < x,,, be arbitrary points of E*, and suppose
(— oo, 2] is a connected component of K(f). The case [x,, + ) < K(f)
is handled in the same way. Choose b,€ B so that by(x,) = x,.,. If
we set f, = b,fb;", then K(f,) = b(K(f)) has (— , x,.,] as a connected
component. The elements of B have the form b(x) = 8 + «, and if
we give to B the topology induced by the euclidean topology for B,
then the mapping ¢(b) = bfb~(x,.,) from B into E* becomes continuous.
Now o(e) = fy(®,+1) = ®,+1, and we can find a connected neighborhood
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U c B of e so that be U implies b(z,,,) € (x,, + ). Since x,., is a
boundary point of K(f,), we can find be U with the property that
b x,.,) € B* — K(f,), whence p(b) # ®,.;. From the connectedness of
U we infer that o(U) is a nondegenerate interval which must have
a nonempty interior. If we set G, = {geG: {x, ---, x,} C K(g9)}, then
be U implies

K(bfb™) D b((— o0, Ban]) = (— o0, b(@ns1)] D (— o0, 24] ,

so that bf,b~'e G, and o(U) C Gy(®,+,). Lemma 3 tells us that if we
know G to be n-transitive relative to H*(E"), then G is (n + 1)-transi-
tive. Since G is clearly O-transitive, a simple induction argument
shows that G is w-transitive.

Clearly the group G, generated by f and any conjugate hBh~' of
B, where hc H(E"), is also w-transitive relative to H*(E"). For the
fixed point set of f, = h~'fh is homeomorphic to that of f, so that
the group G, generated by f, and B is w-transitive by Theorem 6, and
G, = hG,h', Similar remarks apply to the other theorems in this
gection. We also observe that some groups generated by fe H(&E')— Af
and B are not even 2-transitive, Choose b,¢ B and fe H*(E') — Af
so that by(x) = B, + x, where B, = 0, and f has period B, in the sense
that f(B, + ®) = B, + f(x), or b, fb;' = f. Now f and each element
of B commutes with b, so every element of the group G generated
by f and B commutes with b, If any such element maps « into v,
then it maps = + B, into ¥ + B,, and G is not 2-transitive.

THEOREM 7. Suppose {fi, fs, -} HY(E"), and, for every compact
subset C of E*, there is an f, satisfying E' = K(f,) D C. Then the
group G generated by {fi, fs ++-} and B is -transitive relative to
H*(E"Y).

Proof. Let 2, < --- < x,,, be arbitrary points in E', and f,.
have the property that E' = K(f,)D>[%, — 1, z,..]. If K(f.) contains
a half-line, then our result follows from Theorem 6. We will assume,
therefore, that the connected component [y,, %] of K(f,) which contains
[, — 1, x,.,] is bounded. Choose b,€ B so that by(y;) = @,.,, set g, =
b, fb:", and let @(b) = bgdb~*(x,+,) for each be B. Then K(g,) has
[¢2 %.21] as a connected component, where y, = b(y,) < 2, — 1. Asin
the proof of Theorem 6, @ is continuous, ¢(¢) = 2,,;,, and we can
find a connected neighborhood U — B of e such that be U implies
b(2,11) € (%, + o) and b(y,) € (— o, x,). Again there is a be U such
that o(b) # #,.,, and if we define G, as before, then be U implies

K(bgob_l) o b([y27 xn+1]) - [xly wn] H
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so that bgb'e G, and o(U) C Go(%,+;). The rest of the proof follows
that of Theorem 6.

THEOREM 8. Suppose f,g9e H*(E'), E* + K(f) has a monempty
interior, and K(9) = {y,}. Then the group G gemerated by f, g and
B is w-transitive relative to H*(EY).

Proof. Choose ¥, y,cE' and b,e B so that [y, v,] < K(f) and
bo(¥o) = ¥.. If we set g, = bgb;?, then K(g,) = {y,}, and if we define
g1 = go in case gy(¥,) > ¥, and g, = g7 in case ;' (¥:) > ¥,, then g'(y,) —
+co as m— +co. Finally, let b,(x) = 8, + « and

frn = 02297f97 "0
Then

K(fn) = 0297(K(f)) D bz ([y1, 97(¥2)])
= [_Bm + Y1y _IBM + g{n(yz)] .

If we choose B, = 97(y,)/2, then any compact subset of E' will even-
tually lie in some K(f.), and our result follows from Theorem 7.

COROLLARY. With the same hypotheses as in Theorem 8, the
group generated by f and Af is w-transitive relative to H*(E*Y).

THEOREM 9. Suppose {fi, [ +++}  H*(II'), and there is a point
Y, € II' such that, for every neighborhood U of ¥, we can find an
fw satisfying II' = K(f,) D II' — U. Then the group G generated by
{fis foy +++} and Q is w-transitive relative to H*(II"), where @ is the
group of “rotations” qe€ P{ of the form q(x) = (ax — B)/(Bx + «)
with a, B real and not both 0.

Proof. The name “rotation” for an element of @ is suggested
by the fact that @ is strictly l-transitive, so that ¢ is the only one
of its elements with fixed points. We can identify Q with the set
of ordered pairs («, 8), excluding (0,0), but we must also identify
(a, B) with (na,AB) for each real A 0. Thus @ is topologically
equivalent to II*, that is, a circle. The action of @ on II' is, there-
fore, the same as that of the group of real numbers modulo 27
on itself by means of left translation. We will show, first of all,
that the group G, of those elements in G which fix - is w-transitive
relative to H*(E"). Let ¢, < ++- < ®,.,€ E*C II* be arbitrary, ¢,€Q
map ¥, into x,,, + 1, and f,, have the property that

' = K(f) D II" — 77 ((¥n41y Tnia + 2)) «



202 JAMES V. WHITTAKER

Setting f = q¢,f.q:", we have [II' = K(f)D II' — (%yi1, Zurs + 2). Let
4, be the right-hand endpoint of the connected component D of K(f)
which contains II* — (€,4,, ... + 2), where II' is oriented so as to
agree with the ordering of E'. If we choose ¢,€ @ so that ¢,(y)=2,.,
and set ¢, = ¢q,f¢7*, then ¢,(D) is a connected component of K(g,)
which containg II' — (%41, T,1 + 2). We define ¢(q) = ¢g.¢7*(%,.1,) for
each ¢eQ, and observe that ¢ is continuous, ¢(¢) = ®,.,, and there
is a connected neighborhood V <@ of ¢ such that ¢e V implies
(X ps1, o1 +2)) C (@, +). As before, (V) has a nonempty interior,
and ¢ € V implies

K(99:q7") D qUI' — (Xpy1y Tpyy + 2)) D I — (2, + o),

so that ¢g.g'eG,. If we set G, ={geG:{x, ---, 2.} < K(g)}, then
Gy(¢,..) has a nonempty interior, and Lemma 3 implies that G, is
w-transitive relative to H*(E"). To show that G is w-transitive relative
to H+(II'), we can apply the argument in the proof of Lemma 9 with
P replaced by @, for only the l-transitivity of P;* was used in that
case.

THEOREM 10. Suppose f, ge H+(II"Y), II' + K(f) has a nonempty
tnterior, and K(g) = {y.}. Then the group G generated by f, g and
Q 1s w-transitive relative to H*(II*).

Proof. Choose ¥, <y, in E*CII' and q,, ¢, € Q so that [y, v.] CK(f),
Q%) = o, and ¢,(y,) = . Then g, = ¢,9¢;* has only one fixed point
at oo, and f, = q.fqi" leaves fixed the points of [— o, y,;], where
¥ = q,(y.) and, for the sake of our interval notation, we identify
—oco and + oo with oo, Now {g¥(yy): — <k < + o} has + as a
limit point, and, for every neighborhood U of <, we can find an
integer k satisfying

o' — U c[— e, g5(ys)] < K(95£095") .

Our result now follows from Theorem 9.

COROLLARY. With the same hypotheses as im Theorem 10, the
group generated by f and Py is w-transitive relative to H™*(II,).

THEOREM 11. Suppose X s a locally compact, locally connected
metric space which can not be separated by any finite set,

{flyfzr “'}CH(X) ’

and y,€ X has the property that {X — K(f:)} is a base for the
netghborhoods of y,. Let RC H(X) be a 1l-transitive group of
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isometries of X, and R, = {reR:r(y,) = ¥,). Suppose there is a
continuous mapping o from [0,1] into R with the topology of
uniform convergence on compact sets such that o(0) e R,, 6(1) e R — R,,
and, for each ye X, R(y) is the sphere containing y with center at
Yoo Then the group G generated by {fi, fz +--} and R 1s w-transitive.

Proof. Let x, .-+, 2,,,€ X be given, and
GO = {QEG: {xly tt xn}CK(g)} .

If we can show that G(z,,,) has a nonempty interior, then our result
will follow by induction from Lemma 1. Since G is l-transitive, we
may assume that x,., = y,. For let g,€ G map x,., into ¥, and

Go = {9' € G: {go(x1), * -+, 9o(x.)} € K(9')} .

Then ¢ e G, implies ¢,99;* € G}, and ¢’ € G; implies ¢;"¢’g, € G,, whence
9:'Gig, = G,. If we know that Gi(y,) has a nonempty interior, then

Go(xnﬂ) = g(TlG{)go(an) = go—l(G(;(yo))

also has a nonempty interior. Hence, we can assume that z,., = ..
If we set o(t) = r, for te|0, 1], then a = p(r,(y,), ¥,) > 0, where p is
the metric for X. Let A be the shortest distance from vy, to
{2, -+, 2,}, U, the open ball with center y, and radius ¢ = min («, 5/2),
and f, such that y,e X — K(f,) cU.. Since ¢ < «a, and o(7.(¥,), ¥,)
is a continuous function of ¢, we can find 0€[0,1] satisfying
o(r(¥y,), ¥o) < ¢ for te[0, 0] and o(rs(¥,), ¥) = . This also implies that
0o, r7(¥0)) =< € for te[0,d]. If we set

G, = {sri'firs™: t€[0,0], se Ry},
then G,c G,. For

K(sri*firs™) = sri{(K(fr) D X — sri(U,) D X — s(U,.)
=X - UZeD{xlv "'sxn} .

Moreover,
7 ferdy) e v ful(O) cril(U) O
and if we hold ¢ fixed and let s vary, then
sr7furs T (Yo) = s(refird(y))
is a sphere with center y, and radius
0(8) = (Yo, T Fir(¥0)) tel0,9].

Since 7;5(y,) lies on the boundary of U, we have r;y'firs(¥.) = %, and
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since 74(y,) = y,€ X — K(f.), we have »;if,.r(¥,) * ¥,. Thus 6(0) = 0,
and 0(3) = 0. Now the local compactness and local connectedness of
X implies that the mapping A -— k™ is continuous, and (4, ) — h(x)
is jointly continuous in the topology of uniform convergence on com-
pact sets [1], so that 0:]0,d]-— E*' is continuous, and 6([0, d]) is a
nondegenerate interval. Hence, G,(y,) contains all spheres with center
9, and radius less than some positive number, and Gy(y,) C Gi(y,) has
a nonempty interior.

COROLLARY 1. With the same hypotheses as in Theorem 11, suppose
that we have f, ge H(X) with the property that {98 X — K(f)): k = 0}
s a base for the meighborhoods of y,. Then the group generated by
1,9, and R is w-transitive.

Proof. We set f, = g*fg~" and apply Theorem 11,

COROLLARY 2. Suppose X = E™ (m = 2), R is the group of rigid
motions of E™, y,€ E™, and {fi, fz +-+} is as in the hypolhesis of
Theorem 11. Then G is w-transitive.

Proof. For the mapping o, we set r,(x) = tx, + «, where z, = 0
is a fixed point of E™,

COROLLARY 3. Suppose X = II™ (m = 2), R is the set of elements
in P, which can be represented by (m + 1)-th order unitary matrices,
Yo I™, and {fi, fz +--} @S as in the hypothesis of Theorem 11, Then
G 1is w-transitive.

Proof. If we regard II™ as the unit sphere in E™ with antipodal
points identified and the metric induced by K™+, then the elements
of R are isometries of II™. For the mapping o, we choose a one-
parameter subgroup of rotations about some axis which does not
pass through y,.

LEMMA 10. Let X be a topological space, G a subgroup of H(X),
@ a homeomorphism from E* onto a closed subset Y of X, and F =
{9eG:9(Y)=Y}. Suppose p'Fop contains A,, and there is a g,€G
with the properties K(g,) D p([0,1]) and ¢g(Y) — Y = &. Then for
any interval I = [a,B] in E* and any ye 'Y — ¢(I), we can find a
g€ G such that K(9) D p(I) and g(y)e X — Y,

Proof. LetGo={9ecG:p(I)C K(9)}and Y,={ye Y:G(y)— Y= O}.
Clearly Y,isopenin Y. If ac A, and a(I) D I, then we will show that
ap(Y,) C o(Y,). We first choose fe F so that ¢~'fp = a. For each
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te o (Y,), there is a ge G, satisfying gp(t)e X — Y. Then
K(f9f™) = f(K(9)) D foI) = pal) D p(I)
implies that fgf—'*e G,. From
fof " pa(®)) = fof (fe(t) = fgpt) e (X - Y)=X - ¥

we infer that a(t)e (Y, and ap™(Y,) Co(Y,). Since we can
always find an ac A4, such that a(I)> I, and ¢ maps any point in
E' — I into any other point further away from I, it follows that if
o (Y,) # @&, then ¢ (Y,) is the union of two half-lines, that is,
E'— o (YY) = [7,0]D]a, 8] = I. We will show that ¢ (Y,) = &
and [a, 8] = [v, 0] by deriving a contradiction from the assumption
v < a. The case 6 > £ is handled in a similar manner. Let C be
the connected component of o~'(K(g,)) which contains [0, 1]. Then C
is a closed interval with at least one endpoint ¢, and we can find an
a,€ A, so that a,(C) DI and a,¢) = a. If fye H(X) is an extension
of pa,p~', and g, = fi9,f5?, then

K(g,) = fo(K(9,)) D pa.p(K(g,) D @ao(c) D C/D(I)

implies that g, e G, and a,(C) is a connected component of @ *(K(g,)).
Choose y,€ Y so that g(y,) e X — Y. From ¢.(fi(%.) = fuge(¥) € X — ¥
we infer that YV, = @ and ¢ (Y, # @. Evidently te[v, a] implies
gp(t)e Y, and we can find ¢,€(v,a) so close to a that ¢, #
o 'gp(t) € (v, ). We may assume, in fact, that o'g,0(f,) < t,; for
if ¢7g,9(t,) > t,, then we would work with g¢i*. Choose a,€ 4 so
that a,(I) D I, a,(t,) = v, and let f,e€ H(X) be an extension of @a,p7.
As we have already seen, g, = fig./7'eG,. Now

P7lg.P(Y) = PGS TIP(Y) = e g par(Y)
= a1¢~19190(t0) < al(to) =7

implies that g,2(v) e Y,, and we can find g,¢ G, satisfying ¢:(g.2(7)) €
X — Y. Since ¢.9.€ G, we conclude that @(v) e Y, which contradicts
our hypothesis. Hence, ¥ = @, and our result is proved.

THEOREM 12. Let X be a topological space which can mot be
separated by any finite subset, R a subgroup of H(X),fe H(X),
® a homeomorphism from KE' onto a closed subset Y of X, and
S={geR:g(Y)=Y}. Suppose o'SpD A, S, ={gecG: Y K(g)} 1is
l-transitive on X — Y, K(f) D 9(0,1]), and f(Y)— Y + @. Then
the group G generated by f and R is w-transitive.

Proof. We proceed by induction on the transitivity and assume
that G is n-transitive for some n = 0. If x, -+, 2,.,€ X are given,
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G, ={9¢e@G: {z, -+, 2,} € K(g)}, and we can show that Gy(x,.,) is an
open subset of X, then Lemma 1 will imply that G is (n + 1)-transitive,
and our induction step will be complete. By hypothesis, there is a
9,€ G which maps {,, ---,2,} into ©((0,1)) and %,,, into @(1). We
consider three cases for the position of g,(xz,). In case (i), gJ(x)e Y
and @7'g(x,) < 1. Then we can find an interval I = [«, 8] which
contains @~ lg,(x), « -+, P g,(x,) but not ¢lg(r,.,), and Lemma 10
gives us a g, € G with the properties (1) < K(g,) and g.(gy(2,+.)) € X—Y.
Since Sy(9.9:(%.+1)) = X — Y is open in X, it follows that

9597 8:0:90(% 1) = 95797(X — Y)
is open in X, From ge S, we infer that
K(g7'97'90.90) © 957'97(Y) D 95'97'P(I) = g57'p(I) D {wy, «++, %},

whence g¢;%¢7'S,9.9, C G,, and our induction step is complete in case (i).
In case (ii), g(x,)e X — Y. Now Lemma 10 gives us a ¢g,€G with
the properties K(g,) D {go(2s), ++ -, 9o(®,:1)} and g,2(0)e X — Y. We can
also find g, € S, satisfying g:(9.9(0)) = gi(x;). Setting g, = g795'¢,, We
have

9.(x:) = 9:7'95'90(®;) = go(s) , 2<i<n+1,
9.(2)) = 9:795790(%;) = P(0) .

Thus case (ii) can be reduced to case (i) with g, replaced by g,.. In
case (iii), g((x;) e Y and o~'gy(x,) > 1. Again Lemma 10 gives us a
gs€G such that K(g;) D{g:(a2), « -, 92,11} and gy(g(x)) e X — Y.
Setting ¢, = g,9,, we have

96(%:) = 9590(%:) = go(®:) , 2<i<n+1,
96(21) = gsg(x) e X — Y .

Thus case (iii) can be reduced to case (ii) with g, replaced by g, and
all the cases relating to the position of g, (x,) have been disposed of.

THEOREM 13. The conclusion of Theorem 12 remains valid if
we replace E* by II', that is, a circle, and A, by P,

Proof. The proof of Theorem 12 up to the definition of g, can
be carried over unchanged. This time, however, we choose g, so as
to map {x,, ---, ,} into ©((0, 1)) and consider two cases for the posi-
tion of g,(x,.). In case (i), g/(x,;)eX — Y. As we have already
seen in the proof of Theorem 12, this implies that Gy (z,.,) is open
in X, and our induction step is complete in this case. In case (ii),
9o(%.+1) €Y. By hypothesis, these is some point y,€Y — o([0, 1])
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satisfying f(y)e X — Y. We choose p,€ P, and a neighborhood U

of @7'gy(x,+,) so that UCII' — {p7'gy(x1), -+ * =, PT90(%a)}, Di(P7H(¥0) =
P7'9y(%y11), and p,(JI' — [0,1)cU. Let g,€S be an extension of

op,p~", and g, = ¢,f97*. Then

K(g.) = 9.(K(f)) 2 9.2([0, 1])
= opy([0, 1) D p(II* — U) D {g4x), * -+, go(®,)} »
9:(9o(% 1)) = glfgl—l(go(xwl))
= 0, fPPT P9 ®0 1) = 91 fPPT W) EG(X - Y) =X - Y.

If we set g, = g,9,, then

95(%:) = 9:94(%:) = go(w;) , 1<i<n,
95(Tps1) = 9:00(@,)€X — Y,

and case (ii) can be reduced to case (i) with g, replaced by g,. Thus
all the cases relating to the positions of g.(«.,+,) have been disposed of.

COROLLARY. Suppose R is a subgroup of H(X), fe H(X), X+ K(f)
has a monempty interior, and either (i) X = E™ and R = A,, or
(ii) X =II" and R = P,. Then the group G generated by f and R
18 w-transitive.

Proof. The case m = 1 has already been verified in Theorems 8
and 10, so we will assume that m = 2. We first consider case (i) and
choose points x,cint K(f) and x,€ E™ — K(f). If f(x,) does not lie
on the line Y through x, and 2, then our result follows from Theorem
12, since K(f) NY contains a nondegenerate interval. If f(x,)eY,
then we choose a rotation a, € A4,, about the point %, through such a
small positive angle that K(f) N a;’(Y) contains a nondegenerate
interval I. Setting f, = a,fa;, we have

KE(f)NY =a(K(NNY = a(K(f) Nar(Y)) Da(l),
fi@) = afar'(x) = a f(m)e X - Y,

and our result again follows from Theorem 12 with f replaced by f..
Case (ii) is handled in exactly the same way, for we can identify E™
with the finite part of II™, and a, can be extended to an element of P,,.
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