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This paper deals with the general problem of determining
conditions under which the representability of a given functor
G: A ~»Ens implies the representability of a subf unctor
F: B ~-> Ens of the restriction of G to a subcategory B of A.
With suitable conditions on A and B a set of necessary and
sufficient conditions for the representability of such a functor
F can be obtained. A few examples are given which indicate
the connection between this case of relative or induced re-
presentability and universal algebra.

If A is a suitably restricted category, then a theorem giving a
set of necessary and sufficient conditions for a functor G: A — > Ens to
be representable can be proved starting from the same concepts de-
veloped for relative representability in the first section. This result
on absolute representability is similar to one of Benabou and has as
corollary the theorem of Freyd giving a set of conditions for the ex-
istence of adjoint functors. We use the convention throughout that
the functor T: A •--» B has an adjoint S: B- > A or that T is a coadjoint
of S if the Horn functors A(S-, - ) and B(-, T-):BOP x A ~+Ens
are naturally isomorphic.

1* Minimal factorizations. Suppose that G: A •--•> Ens is a functor
and that Ens is the category of sets. Let A# be the category whose
objects are those pairs (A, x) with A e A and x e GA and whose mor-
phisms a: (A, x) — > (B, y) are those morphisms a: A —> B of A such that
(Ga)x = y.

A has minimal G factorizations if for each (A, x) in A$ there
is a subobject K: K--+A of A in A minimal with respect to the proper-
ty that K: (K, k) —> (A, x) for some k e GK. In addition it is required
that if a and β are morphisms (K, k) —* (B, y) then a = β. We call
x = G(ιc)k a minimal G factorization of x.

A is well powered if the class of subobjects of each object is a
set. The term co-well powered is defined dually. A is complete if
each set of objects of A has a product and any pair of morphisms
a,β:A~>B has an equalizer.

G: A —• Ens is continuous if G preserves products and equalizers.

LEMMA. If A is a well powered complete category and if
G: A —»Ens is continuous, then A has minimal G factorizations.

Proof. Let X\E*~+A be the intersection of the set S =
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{pii Ai~~* A}iei of all subobjects of A such that ρ{: (Ai9 xt) — > (A, x)
for some x{ e (xA;.

Let P = Πiβ/ (At) with projections είβ For the product J[IXI (A)
with projections pik there exists a unique pair of morphisms
a, β: P—> Π/χ7 (-A) such that

ΠA ΠA
IX/ 7X/

«/ \pik β/ \ϊ>ifc

/ \ / \

P A and P A

\ / \ s
Aι Ak

commute for each i,kel. There exists an equalizer tc of α, β with
^ — Pk^k^ E—» A .

For each ^ { e >S let «< e GAi be an element such that p{: (Aiy xt) -•
(A, x). Since G preserves products there is a unique ξ e Π/ GAi =
G(Π A<) such that a?< = (Ge<)ί for each i e /. Thus ε,: (P, £) -* (A,, »«).
From the diagram it follows that pika, pίkβ: (P, ξ) -* (A, x) for each
(i, k) e I x I. Thus (Gα)«f — (G/3)f and since G preserves equalizers
there is a unique φ such that

commutes. Thus λ = ̂ β ^ : (£7, φξ) -> (A, a?) as required.
If μ,ω:(E,φζ)--+(B9y), then let τ: T -* E be the equalizer in A

of μ, co. Since G preserves equalizers there is a unique 8 such that

- - —

\

commutes. Thus τ:(T,δ<pξ)~-+(E,<pξ) must be an equivalence since
otherwise we would have a contradiction to the minimality of λ: E --• A.

A morphism #:.B— >A admits an image if there exists a smallest
subobject A::iΓ->A such that x has a factorization R-*K- > A with
jβ --* K epic.

COROLLARY. J^ a well powered, complete category every mor-
phism x:R—>A admits an image.
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Proof. The minimal G — A(R, —) factorization of x is the one
required.

COROLLARY. (Freyd) If A is well powered and complete and
J:A~*B is continuous, then for every morphism y:B~*JA there is
a minimal subobject of A which allows y.

Proof. Let G = B(B, J-).

2* Absolute representability* The functor G\ A—+ Ens is re-
presentable if there exists an object U in A such that the Horn functor
A( U, —) is naturally isomorphic to G. Equivalently, G: A •--»Ens is
representable if AΘ has an initial point (cf. Mac Lane [7]).

THEOREM. If A is a well powered and complete category, then
G: A —•> Ens is representable if and only if

(i) G is continuous.
(ii) There exists a set of objects (Aif a{) in AQi indexed by I,

such that for each (A, x) in AG there exists (Aiy αί) --*(.A, x) for some
i in I.

Proof. If φ: A(R, — )-*G is a natural isomorphism for some
Re A, then (J?, ̂ (1^)) is initial in Aσ and the continuity of G follows
from that of A(R, - ) .

For the converse we will find an initial point for AG. Let B =
Πiei (A/) with projections ε3 . There exists a unique b e GB with j-ih
component aό since G is continuous. Thus we have εd: (B, b) -> (Aj9 aό)
in AG. By the Lemma there exists κ\ (B', b') -> (B, b) giving a minimal
G factorization of b. If (A, x) e AG, then by hypothesis there exists
φ: (Ai9 at) •--> (Af x) for some i e I. Thus φe{κ\ (Bf, V) •--> (A, x). If

β: (B\ V) -> (A, x), then β = φ^ic by the definition of minimal G fac-
torizations. Hence (B', V) is the required initial point.

This theorem has the following result of Freyd [4] as a corollary.

COROLLARY. Let A be a well powered and complete category and
let J: A —> B be a functor. Then J has an adjoint if and only if

(i) J is continuous
(ii) For B in B there is a set of objects SB S A such that for

B — > JA with AeA there is a<: B -> J ^ with A{ e SB and a: A{ -* A such
that
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B --»-» JA{

r
JA

commutes in B.

3* Relative representability* Let

G: A » Ens

F: B » Ens

be a diagram of categories and functors such that FB S GJ? for all
β in B and Fβ is the restriction of Gβ to FB for β:B~>B' in JS.
Such a functor JP7 will be called a subfunctor of the restriction of G
to B. Then ^ G GB is JF distinguished iί B e B and ^ 6 i^B.

Now we come to a useful set of conditions sufficient to ensure
the representability of a subfunctor F: B-* Ens of the restriction of
a representable functor G: A — * jEfas to B i i .

THEOREM. Lei A 6β weiί and co-well powered and complete, and
let B be a full subcategory of A containing a copy of Π B< for each
set Bι of its objects. Suppose that F is a product preserving sub-
functor of the restriction of A(R, —) to B, with the property that
if p is F distinguished, than p has an image

B'

where p' is F distinguished. Then F is representable by a natural
equivalence ψ: F-* B(R', —) such that the diagram

F-Φ~>B(R', -) = A(R',-)\B

\ /

Λ(R,-)\B

commutes for an epic σ\R-->Rr in A.

Proof. If {Bk}keκ is a set of objects in B, then there exists
Hκ(Bk) in B with projections ek:J[(Bk)^Bk. Then for each
p: R —> Π (Bk) for which εkp: R —• Bk is F distinguished for all k e K,
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it follows that p is F distinguished since F is product preserving.
Let S — {Xs: R--> B^JQJ be the set of all F distinguished quotient

objects of R. There exists a unique μ: R-> Πyej B, such that

commutes in A for each j e J where s,- is the projection. But Xά —
edμ is F distinguished. Hence μ is F distinguished. Let

R'

be an image of μ. Then μ' is F distinguished and epic in A. Thus
(R\ μ') e BF.

If (C, a) is an object of BF, then let

be an image of a. af is epic and is F distinguished since a is F
distinguished. Hence a' represents a member of S. Let εα,: Π B3 —*C
be the corresponding projection. Thus we obtain iaea,iμ: (R'y μr) ->
(C, α:) in i?^ from the preceding three diagrams noting that

But diagram II gives a minimal Jι(J2, —) factorization of μ. Hence
if ia6afiμ and τ are morphisms (i?', μ') -> (C, α) in AF then ΐαεα,ΐμ = τ.
Thus (R',μf) is initial in BF. If ψ: F-* B(Rf, —) is the correspond-
ing equivalence, then for σ ~ μ' it is clear that the required diagram
commutes.

The category B ξΞ= A is closed under subobjeets means that if
BeB and A— >B is a monomorphism in A, then AeB.

Finally we obtain a set of necessary and sufficient conditions for
relative representability.

THEOREM. Let A be well and co-well powered and complete and
let B be a full subcategory of A closed under subobjeets and containing
a copy of Π B{ for each family Bi of its objects. Assume that any
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morphism which is epic and monic is invertible.
If F is a subfunctor of the restriction of A(R, —) to B, then F

is representable by a natural equivalence ψ: F—> B(Rr, —) such that
the diagram

F~?~> B(R', -) = A(R', -)\B
\ /

A(R,-)\B

commutes for an epic σ: R—>R' in A, if and only if
(i) For each p which is F distinguished with image

B'

it follows that p' is F distinguished.
(ii) F is product preserving.

Proof. Let p be F distinguished with image

o
R "---> B

\ /
P'\ /if

B'

Now p F distinguished is equivalent to the existence of a factorization

\

R'

The morphism pQ has an image

R' ?~

\
P'o\

with p'o epic in A. From the minimality of % it follows that there
exists φ such that
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Ί A A
commutes. The morphisms σ and p'o are epic. Thus φ is monic and
epic and hence an equivalence. The object B' e B since B is closed
under A subobjects and p* factors through σ. Hence pr is F distin-
guished. The converse follows from the preceding theorem.

4* Applications* Let Ω — U Ω(n) be a disjoint union of sets
indexed by the nonnegative integers. Then Ω is called an operator
set. A is an Ω algebra if A is a set with functions ω: An —> A defined
for each ώ e Ω(n). a: A -> B is a morphism of Ω algebras if a is a
set mapping such that

aA

commutes for each ω e Ω(n) and each integer n. For fixed Ω let (Ω)
be the category of all Ω algebras and their homomorphisms. For
further details see Cohn [2].

LEMMA, (a) There is only one θ algebra structure on the cartesian
product of θ algebras so that each of the projections becomes a mor-
phism of θ algebras.

(b) If f: C1—>C2 is any function, and g:C2—+C3 is a θ algebra
monomorphism such that gf is a θ algebra morphism, then f is a
θ algebra morphism.

THEOREM. Let

(Ω) -----» Ens

be a commutative diagram of categories where C is a full subcategory
of θ algebras for some operator set θ, B is a variety of Ω algebras,
and S, T are forgetful functors. Then J has an adjoint.

Proof. The forgetful functor S: (Ω) --•> Ens has an adjoint W by
a result of Cohn [2]. Thus there is a natural equivalence
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φ: Ens{TC, S-)—-> (Ω)(WTC, -) .

It is sufficient to show that C(C,J—) is representable for each
C e C. A natural equivalence between C(C, J—) and F = a subfunctor
of the restriction of (Ω)(WTC, —) to B is determined by a—*φ(Ta)
for aeC(C,JB).

Let φ(Ta) be an F distinguished morphism with image

\ /

B'

B is closed under subobjects. Thus B'—*BeB. Under φr1 the
diagram becomes

TC -—--—> SB .

/Si

SB'

Si — TJi. Hence Ta and the monomorphism TJi are θ algebra homo-
morphisms and thus so is φ~λξ by part (b) of the lemma. Thus
φ-τζ = Ta' for some ar eC and ξ = φ(Ta') is F distinguished.

Let Π Bj —> Bj be a product in B. J(Π #i) is the set theoretic
cartesian product of the θ algebras JB5 since S = TJ is forgetful on
B. Thus J(Π Bj) = Π ê -Bj by part (a) of the lemma. Hence J and
thus .F preserve products.

It should be noted that the same result holds by the same type
of argument if there are elements of Ω corresponding to infinitary as
well as finitary operations.

The preceding theorem has the following result of Lawvere [6]
as a corollary.

COROLLARY. Every algebraic functor has an adjoint.

Proof. An algebraic functor S(/): 3{N} — > δ{Itί) is determined by a
morphism /: M—> N of algebraic theories. UN = UMδ{ΐ) for UN: 3{N) — >
Ens the underlying set functor. A commutative diagram

(Ω) —-> Ens
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is thus obtained. This completes the proof since d{N) is a variety of
Ω algebras for some operator set Ω.

Let B be the category of associative R algebras and let C be the
category of Jordan algebras over R. We suppose that (Γ) is the
category of all sets having the same number of %-ary operations de-
fined as B for each n ^ 0. If M(C, B) is the set of Jordan representa-
tions C-+B, then the representability of M(C, —):B ~>Ens follows
from that of Ens(TC, S-): (Γ)~>Ens by the relative representability
theorem for S: (Γ) •--» Ens and T: C •--•> Ens the forgetful functors. In
terms of universal algebra the representability of M(C, —) is equivalent
to the usual result that there exists a Jordan representation C— * UC
which is universal for any Jordan representation C —•> B.
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