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Let R; denote the real line with the discrete topelogy.
Let B=R; be its dual. R, the real line is continuously
isomorphic to a dense subgroup of B. Let x« be a finite positive
measure defined for Borel subsets of B. Let y; denote the
character on B corresponding to the real number {. We shall
denote by Hg the subspace of L.(B, u) spanned by {x:t < S}.
Assume that [N—w<s<o Hs = {0}. In this case the subspaces
Hy are strictly increasing in the sense that Hy & Hg whenever
S < S’. The increasing subspaces generate a spectral measure
E defined for intervals ¢ <z =b by E(a,b] = orthogonal
projection on H; © H,. We shall say that £ has multiplicity
1 if there exists an element w € Ly(B, z) such that {E(c)w: 0 € <7}
spans Ly(B, ). Here <% denotes the class of Borel subsets
of R.

TaeorEM 1. Assume that

(i) nsHs = {0}-

(i) E has multiplicity 1.
Then . sits on a coset of R in B.

The present work was suggested and is strongly influenced by
papers of Helson and Lowdenslager |6, 7] and Helson [4, 5]. Other
papers that were useful are also listed in the references.

2. In this section we shall state some general results about
spectral measures pertinent to us and prove some results that shall
be of use. Proof of Theorem 1 will be given in §3.

Let H be a (complex) Hilbert space. Let E be a spectral measure
defined on Borel subsets <# of the real line. Values of K are
orthogonal projections on subspaces of H, Suppose that E has multi-
plicity 1, i.e., there exists a vector ze H such that {F(o)z:0¢e <7}
spans H. This implies that H is separable., Such a z is called cyclic
vector for E. Write m(o) = || E(0)|}, 0c.<#. Then m is a finite
positive measure on <#. If we write z(o) = E(0)z, then z(o) is a
vector valued measure taking values in H. It can be shown that
under the assumption of multiplicity 1, every element h ¢ H has an

integral representation of the type & :Sm @, (\)dz(\), with
| 1out) 1 dm(y) < o

[§1, p. 264]. Further E(o)h = S p,(Ndz(V). Let hy, by by, oo+ be a
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complete orthonormal set in H. Let measures m,;, ¢t =1,2,3, --- be
defined by m;(o) = ||E(0)h;]’. Let v denote the measure v(o) =
2. (1/2"Ym (o). The following lemma is known and easy to prove,

LEMMA 1. If E has multiplicity 1 and z its cyclic vector, then
measure m and v are mutually absolutely continuous. Here m is
the measure defined by m(o) = || E(o)z |

The next lemma is known and its proof can be found in (|9], p.
318). For any measure p, we shall write z, for the measure ¢,(0) =
mo +t), oeZ, teR.

LEMMA 2. gy, is a finite positive measure defined on Borel subsets
of R. Assume that p, and p, are mutually absolutely continuous.
Then p, and Lebesgue measure are mutually absolutely continuous.

A function called cocycle presents itself in the proof of Lemma 5.
It is necessary to show that, in our context, such function has a
special form called coboundary.

DerINITION 1. A function A(¢, A) on R x R is called a cocycle if

(i) |A@,N)| =1 for all ¢ .

(ii) A(t,n) is Borel measurable in ) for every fixed ¢.

(iil)  A(t + u, MA®E, MNA(u, N+ t) for almost every Nc R (with
respect to the Lebesgue measure).

The set of Lebesgue measure zero where (iii) does not held may
depend on (¢, u).

DEFINITION 2. A cocycle A(t, \) is called a coboundary if it is of
the type B\ + t)B~Y(\) for some function B on R of absolute value 1.

We shall prove the following

LEMMA 3. Ewery cocycle is a coboundary.

Few remarks should be made before we prove this lemma. The
proof of Lemma 3 is trivial if condition (iii) of cocycle held everywhere
instead of almost everywhere. For in that case we need only put
A = 0 in (iii) and observe that

Au, 1) = At + u, 00A7'(, 0) .

Cocycles and coboundaries occur very crucially in the works of
Henry Helson and David Lowdensager although domain of definitions
of these functions changes according to context in their work. In his



A CLASS OF MEASURES ON THE BOHR GROUP 323

book on invariant subspace [4], Helson proved Lemma 3 under an
additional hypothesis which is equivalent to requiring that A(t, ) be
jointly measurable in (¢, \). There are cases however where one has
to deal with cocycles A(¢t,N) which are measurable in A for every
fixed ¢t. The present paper is one such case.

Finally we remark that the idea of our proof is already contained
in the papers of Mackey [9] and Helson [4, 5]. We state here, without
proof, a theorem of Mackey [9, p. 317] which we shall need in the
proof of Lemma 3.

THEOREM 2. Let M, and M, be sigma fintte measure spaces with
measures p, and p,. Suppose that there is a countably generated
Borel field & of measurable subsets of M, such that every measurable
subset of M, differs from some member of & by subset of a set of
measure zero. Let [ be a complex valued function on M, x M, which
18 measurable and essentially bounded as a function on M, for each
JSized point in M,. Suppose that S S, yydu,(y) is measurable on M,
for each fixed measurable subset ﬁ of M, of finite measure. Then
there exists a function f'(x,y) jointly measurable on M, x M, such
that for all xe M,

f(@,y) = f(x,y) for almost all ye M, .
Proof of Lemma 3. Consider
F(u, t,N) = A(t + w, N)A'(E, M)A (u, N) .

From the cocycle relations (iii) we see that for each fixed u, ¢

1) Fu,t,\) = A(u, » + )4 (u, ) a.e. ).

2) Fu,t,\) = A(t, M + w)AE, N a.e \.
(1) and (2) show that F'(u, t, ») is measurable in (¢, \) for each fixed
% and measurable in (u, \) for each fixed ¢. We show that F can be
chosen to be measurable in all three variable (u, ¢, ) and still satisfy
(1) and (2). Let o be a measurable set in (¢, 1) of finite measure.
Consider

SSGF(QL, £, \)dnde .
We show that this integral moves continuously in wu.
SSJ Flu, t,7) — F(s, £, \) | d\d
- SS| A(E + u, M)A, N A=, \)
— At + 8, MAZ(E, WA, V) | drdd
* = Sg| At + w, \A(u, \) — A + 5, A~ (s, ) | dndt
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This identity holds since | A(t,N\)| = 1. Again by cocycle identity
@ii), (*) is equal to

SS LA, N + u) — A(t, % + ) |ddt— 0 as s— .
Thus for each (¢, ») measurable set ¢ of finite measure
SS Fu, t, \dndt

moves continuously in w. So by Theorem 2, we can replace F'(u,t, \)
by a measurable function in all three variables.

So we assume now that F' is measurable in all three variables.
Now

(**)y  A(t + u, WA (E, WA (U, N) = A(w, v + A u, N)
for almost every A for fixed (¢, ). But the left hand side is
measurable in (u, t, \) and so by Fubini theorem there exists ), such
that (**) holds for almost every (u,t). So for almost every (u, t)

At 4w, N)ATHE, N) AN wy No) = A, Ny + E) AT (w, Ny)
At + u, M)A (E, M) = Aluy, N + 8)
Put », + t = s, then
A(s — N + U, M) ATH(S — Moy M) = A(u, 8) .
Write B(z) = A(x — X, Ny). Obviously A(u, s} = B(u + s)B7'(s).

REMARK. We note that

B(u + s)B~(s)B7(u) = A% + s — Ny M)ATH(S — Ny No) AT — Noy No)

is jointly measurable in (u, s).

DEFINITION. A spectral measure E on <7 is called stationary if
there exists a commutative group 7T, t< R, of unitary operators such
that for every Borel set ¢ e <z, T'K(0)T* = E(o + t).

LEMMA 4. Let E be a stationary spectral of multiplicity 1 and
let 2z be a cyclic vector for E. Then the measure m defined by

m(c) = || E(o)z||* and Lebesgue measure are mutually absolutely
continuous.

Proof. Let h,, hy, hy, -+ be a complete orthonormal set in H.
Since T'* is unitary T‘h,, Tth,, --- is again a complete orthonormal
set in H. By Lemma 1, m is equivalent to g, defined by (o) =

©  (1/2")(E(0)Th,, Th,) for every t. Now
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1(0) = 3 - (BO) Ty, T'h,) = 35 (1B (@) TNy, h)
= 3 - (B + Dl ) = o + 1)

Thus g, and g, are mutually absolutely continuous for every ¢, and
so by Lemma 2 g, and Lebesgue measure are mutually absolutely
continuous. So m and Lebesgue measure are mutually absolutely
continuous.

LEMMA 5. Let K be a stationary spectral measure of multiplicity
1. Then there exists a wector valued wmeasure z(-) on <& and a
Junction A on R of absolute value 1 such that

(i) =2(4) L 2(B) whenever AN B = null set,

(ii) || #(4) || = L(A) where L stands for the Lebesgue measure,

(iii) every h e H has a representation of the type

h = Sl@h(k)dz(x), So_:o! @h(k) ‘2 dn < oo ’

(V) E@h = | 20000,
(v) A7(VNAN + t) is measurable in N for every t,
(vi) Th = Slq)h(x)A—l(x)A(x + t)da(n + t) .

Proof. Letw be a cyclic vector for E and m the measure defined
by m(o) =||E(o)w|? oe<. Let p denote the Radon-Nikodym
derivative m with respect to the Lebesgue measure L. Since m and
L are mutually absolutely continuous, o > 0 a.e. (L).

Define z(+) by z(0) = SS (1/v/o(\))dw(x). Then properties (i) and
(ii) for 2(-) are easily verified. To prove (iii), let h € H. Then h hasg
a representation: & = Sm YN dw(N) with Sw | (V) |2 dm(N) < oo,

h= g‘” POV PNV 20N dw (V). Now (L/V o00)dw(h) is equal to
dz(A). We write v,(A\) 1 p(A) = ®,(\), and representation for & becomes
h = S‘” P,(\)dz(\) with S"_" | @u(\) [Pdn < 0. This proves (iii). Again

E(o)h :S POV dw (V) = ngh(x)dz(x) can be seen to be true. This

proves (iv). It remains to show (v) and (vi). Let us write %Z,(0) =
Tiz(c — t). Z, is again a countably additive measure on <% with
values in H. Since E is stationary, Z,(o)c E(c)H. So Z.,0) has a

representation of the type: %,(0) = S A(t, \)dz(\) for some function
A(t, ), measurable in ) for every t. Further
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HZ(o) [P =T — )| = j2(0 — )|’ = Lo — 1)
= L(o) = S LA N) Fdn

Since this holds for every o, |A(t,\)| =1 for almost every . We
can write the relation between Z,(-) and z(-) formally as dz,(» + ¢)=
A(t, Mydz(\ + t) which is the same as T'dz(\) = A(t, M)dz(h + t). Now
Tettde(N) = T°Tidz(N) = T A®E, Mdz(h + t)
= A(t, MA(s, N + t)dz(\n + t + s)
= A(s + t, N)dz(L + s + 1) .
From this equation we get A(f, MA(s, N + t) = A(s + ¢, \). Thus
A(t,\) is a cocycle. By Lemma 3 A is of the type A\ + t)/A(\) for

some functions A. We choose this A for A of Lemma 5. Obviously
| A(t)] = 1 for every t. Further A(t, N) = A (M)A(N + t) is measurable

in A for every t. This proves (v). Finally let h = S“’ ©,(\dz(\). Then
T = Ttg‘” Pa()d2(N) = S P, T'd2(\) = S PaA(E, Nz + ©)

=" 2iA= )AL + Dz + 1)
This proves (vi).

3. Let us return to the notation and terminology of Theorem 1.
For feL,B,p), write T'f = y,f, where y, is a character on B
corresponding to the real number ¢. It is obvious that 7T is a
commutative group of unitary operators on L,(B, #). Further following
two identities can be easily verified:

(A) THH(O)O H(a))= HOb +t)© H{a +t) where a,b (a <b)
are any two real numbers.

(B) For any fe LB, ), || E(a, blf — fi* = || T*E(a, b]f — T*f I
(A) and (B) together imply that E is a stationary spectral measure,
T'E(0)T~t = E(o + t).

Proof of Theorem 1. The spectral measure E of Theorem 1 is
stationary as shown in the above paragraph. By hypothesis E has
multiplicity 1. By Lemma 5 there exists a vector valued measure
2(+) with values in L,(B, ¢) and a function 4 on K of absolute value
1 satisfying (i)—(vig of Lemma 5. y,€ L,(B, ¢t) has a representation

of the type 7, = & FOVdzOV).
L= 2o = T% = | _FOOAZIAG + den + ).

() A7) = | FOIAZMAC + DA Ode+ 1)
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We shall show that y,(b)A~'(¢) is measurable in ¢ for almost every
be B (with respect to y). First observe that, by remark following
Lemma 3, A (M)A + £)AY(¢t) is measurable in (¢, A). Next the integral
representation (*) for y,A~'(f) exists in the sense that approximating
sums of the type DufO)ATN)AT(N + )A~(t)z(0;) converge to
1ATN(E) in LB, p). Since p is a finite measure the sequence of
approximating sums converges to y,A7'(¢) almost everywhere on B
with respect to p. But each of the approximating sum is measurable
in t for every be B. Hence for almost every b € B (with respect to y)
1:(b)A~'(t) is measurable in ¢ (see [2], p. 430). Now fix a b’ € B such
that y,(b')A-'(t) is measurable in ¢. Consider ¥, (b’ — b). . (b' —b) =
X0 (0) ™ = (WA (@) (1 (b)A~H ()™ = ratio of two measurable
functions in ¢ for almost every b. So y.(b — b') is measurable in ¢
for almost every b € B (with respect to ¢£). But a measurable character
on R is necessarily continuous. So b’ — be R for almost every be B
(with respect to p). Hence bed’ + R for almost every be B (with
respect to #¢). So g sits on a coset of R in B.

Much more is true than simply the fact that g sits on a coset of
R in B. For example, ¢ restricted to the appropriate coset is absolutely
continuous with respect to the Lebesgue measure on that coset and if
f is its Radon-Nikodym derivative, then

H_lg_{ri%}dq < o ([2], p. 586) .

A converse of Theorem 1 is true: If NH, = {0} and p sits on a
coset of R in B, then K has multiplicity 1. This is essentially a
consequence of a result of O. Hanner |3] on representation of weakly
stationary purely nondeterministic stationary stochastic process.

A finite regular measure v on B is called analytic if S 21(0)p(db) = 0
B

for t < 0. Let p denote the total variation measure of v. It can be
shown that the subspaces H, in L,(B, ) have the property ()_w<.<eH, =
{0}. Let % be the spectral measure generated by H, — oo < s < co,
If E has multiplicity 1 then by Theorem 1 g sits on a coset of R in
B and so v sits on a coset of R in B.

Recently in collaboration with V. Mandrekar, we have studied
finite regular measure ¢ on B for which [)_...<. H, = {0} without
assuming that spectral measure E has multiplicity 1. These results
will be published elsewhere.

I would like to express my sincere thanks to Professor S. Koh
for explaining to me the algebraic meaning of cocycles and coboundaries,
and to Professor V. Mandrekar for useful discussions.
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