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It has been shown by R. P. Kaufman and the author
that if μ is a measure of total variation 1 with values in Rn,
then there is a measurable set E with

- 2π^ Γ((n -

The main purpose of this paper is to determine for which
measures μ there is no set E with

27Γ1/2 Γ((n -

It will be shown that they are the measures which satisfy
the following two conditions:

(i) The measure of the whole space is zero.
(ii) The induced probability measure <χ°f(\μ\) on the

projective space Pn~x is orthogonally invariant, where / =
dμ/d \μ\ maps the measure space to the sphere * S n l and a is
the natural map of S"'1 onto Pn~ι.

A different, more geometric proof of the first inequality above
has been given by Schwarz [5].

It is clear that condition (i) is equivalent to the centre of the
range of μ being 0. It will be shown that for n ^ 2, condition (ii)
is equivalent to the range of μ being a ball of radius

1 Γ(n/2)
2π1/2 Γ((n

Of course for n — 1 condition (ii) is trivially satisfied by every measure

with range in R1 since P° consists of one point.

Let X be a space, Σ a tf-field of subsets of X, and μ a measure

on Σ with values in Rn. By the range of μ we mean the set

{μ(E);EeΣ}. For E in Σ, | μ \ (E) will denote the total variation of

μ on the set E. Note that | μ | is a positive measure on Σ-\\μ\\ will

denote \μ\(x).

If Xf is another space, and Σ' a σ-field of subsets of X\ and if
/ is a map of X into X', / will be called measurable if f~\E) e Σ
whenever EeΣf. If / is measurable, and if μ is a measure on Σ,
then f(μ) is that measure on Σ' defined by f(μ)(E) = μif-'iE)).
When X' is a topological space (such as a sphere or a projective space)
we shall always understand that we are using the <τ-field of Borel
sets. By abuse of language we shall speak of measures on X, or
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362 NEIL W. RICKERT

measures on Xr when we should be speaking of measures on Σ on 2".
If / denotes the Radon-Nikodym derivative dμ/d \μ\,f is a

measurable map of X into Rn. By redefining / on a set of | μ |-
measure zero if necessary, we may assume that / maps X into the
sphere Sn~\ Thus f(μ) and f(\ μ |) are Borel measures on Sn~ι. Note
that f(μ) and /( | μ |) are related by f(μ)(dx) = #/(| μ |)(eZaj). It is easily
s e e n f r o m t h i s t h a t \f(μ)\ = f ( \ μ \ ) a n d \\f(μ)\\ = \ \ μ \ \ .

If x e S71"1 we denote by Hx the hemisphere determined by x.
That is Hx = {y e S""1; <j/, x} ^ 0}. For μ an Rn valued measure on
X we denote by pμ the function defined on Sn~ι by pμ(%)='(β(f~1(Hx)), Xs)
where / = dμ/d \ μ |.

Fix an arbitrary point x0 in Sw~\ We denote by G the group
SO(n) and if the subgroup of G consisting of those elements which
fix x0. If we choose an orthonormal basis el9e2, * ,en for Rn such
that ex — x0, then G consists of orthogonal metrices of determinant 1,
while K consists of matrices

1 0 0 ••• 0

0

0
A

0

where A is an (n — 1) x (n — 1) orthogonal matrix of determinant 1.
The protective space Pn~ι is the space obtained from Sn~γ by

identifying antipodal points. We shall denote by α the natural pro-
jection of Sn~ι onto Pn~\

We denote by m the unique probability measure on Sn~ι which is
invariant under orthogonal transformations. Up to a scalar factor m
is the usual surface measure on Sn~\ Note that α(m) is the invariant
probability measure on Pn~\

LEMMA 1. ρμ is α continuous function on Sn~1 and

pμ(x)m(dx) =\
27Γ1'2 Γ((n

if μ is an valued measure of total variation 1 on X.

Proof. The second assertion was essentially proved in the proof
of Theorem 3 of [3]. For the first assertion observe that

- O, μ(f-\H,))>

= \ max (0, <x, /(*)» I μ \ (dt) - \ max (0, <y, /(*)» | μ \ (dt)
JX JX

^ \ <x-V,f(t)>\μ\(dt)£\x-
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The continuity of pμ follows immediately.

LEMMA 2. Let X be a probability measure on Sn~ι and suppose

that / x, \ yX(dy)\ is independent of x. Suppose furthermore that
\ JHx /

λ is K-invariant (i.e. X(kE) — X(E) for k e K). Then a(λ) is the
invariant probability measure on P71"1.

The proof of Lemma 2 will require some properties of spherical
functions, so we postpone the proof until the end of this paper.

LEMMA 3. Let μ be an Rn valued measure of total variation 1
on Σ, a σ-field of subsets of X. Then a necessary and sufficient
condition that pμ be a constant function on Sn~ι is that μ(X) = 0
and Oί(f(\ μ |) is the invariant probability measure on Pn-\

Proof. Suppose first that μ(X) = 0 and a(f(\ μ |) is the invariant
probability measure on Pn~ι. Let x be an element of Sn~\ Define
the function h on Pn~ι by h(a{y)) = ζx, y} if y e Hx. Note that if y
and z are in Hx, and if a(y) = a(z) it follows that <a?, yy = 0 = ζx, zy
whence it follows that h is well defined. Since a(f(\ μ \)) — a(m) it
follows that

Γ(n/2)— _ f h(p)a(m)(dp)
π1 '2 Γ((n -

= \pn_h(p)a(f(\ μ \)(dp)

= \ <x, y>Λ\ μ \)(dy) - \ <x, y>f(\ μ \)(dy)

= \χ>\ vf(\ti\)(dv)/ + \~XΛ yf(\t*

= pμ(x) + ρμ(-x) .

Also pμ(x) — ρμ( — x) = ζβ(X), xy = 0. Thus

p,(x)
^μ 2π112 Γ((n

and pμ is a constant function.
Conversely suppose that pμ is constant. For x e Sn~\ since

H. Π H_x)y = 0 ,

<x, μ(X)> = <x, μ(f-\H.))> + <x

= pμ(x) - pu(-x) = 0 .

Thus μ{X) = 0.
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Now let λ be the probability measure on Sn~λ defined by

X(E) =\ f(\μ \)(kE)dk ,

so that if φ is a continuous function on Sn"\

\sn^(v)Mdy) = y ^ . ^ " W d f \)(dy)dk .

Note that λ is ^-invariant, and that

<( x, I yX(dy) > = I <>, y>X(dy) = 1 max (0, <x, yy)X(dy)

f f
J ίΓ J »S

= 1 \ max (0, <kx, y»f(\ μ \){dy) = I pμ(kx)dk .
J K J S J K

Since ^ is constant it follows that λ satisfies the hypotheses of
Lemma 2. We may thus conclude that a(X) is the invariant measure
a(m) on P%~\ We then conclude that if h is a continuous function
on Pn~γ whose value at a point y depends only on the distance from
y to a(x0)

\h(y)a(f(\μ\))(dy) = \h{y)a{X)dy = \h(y)a(m)dy .

By x0 was an arbitrary point of Sn - 1, so the same assertion is true
as long as the value of h at y depends only on the distance from y
to some point x in Pn~ι (where x depends on h but not y). But linear
combinations of such continuous functions are dense in all continuous
functions on P71"1 (see [4]) so we conclude that a(f(\ μ |)) = a(m), as
required.

THEOREM 1. Let μ be an Rn-valued measure (n ^ 2) of total
variation 1 on Σ, a σ-field of subsets of X. Then the following
conditions are equivalent:

(1) If f — dμ/d I μ \ and a is the natural projection of S71'1

onto Pn-\ then μ(X) = 0 and a(f(\ μ |)) is the invariant measure on

(2) The range of μ is the ball with centre 0 and radius

1 Γ(n/2)
2π1/2 Γ((n + l)/2) *

( 3 ) The convex hull of the range of μ is a ball with centre 0.
( 4 ) For each EeΣ,\ μ(E) \ ̂  (l/2πll2)(Γ(n/2)/Γ((n + l)/2).
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Proof. (4) => (1). It follows from (4) that

1 Γ(n/2)
pμ(x) ^

2ττ1/2 Γ((n

for x G Sn~\ But pμ is continuous, and

as was shown in Lemma 1. It follows that pμ is constant, and (1)
now follows from Lemma 3.

(1) => (4). Assume that (1) is true. Suppose that there is a set
EeΣ with \μ(E)\ > (l/2π1/2)(Γ(w/2)/Γ((w + l)/2)). Then there is an
x e S"-1 such that <>, /*(#)> > (l/2ττ1/2)(Γ(^/2)/Γ((^ + l)/2)). But clearly
<x, μ(f-\Hx))> > <x, μ(E)> so pμ(x) > (l/2π^)(Γ(n/2)/Γ((n + l)/2)) con-
tradicting what was proved in Lemma 3. It follows that (4) must
be true.

(1) => (2). From the implication (1) =̂> (4) we know that the range
of μ is contained in the ball with centre 0 and radius

1 Γ(n/2)

2π1/2 Γ((n

Also from (1) it follows that μ is an atom free measure, since
a(f(\ μ\)) is atom free. Hence the range of μ is convex (see [1]). It
suffices to show therefore that every point on the surface of the ball
is in the range of μ. But from (1) and Lemma 3 it follows that for
x e Sn~\ ρμ(x) = (l/2π1I2)(Γ(n/2)/Γ((n + l)/2)). Whence we conclude,
using (4), that

H))- X Γ { n / 2 ) τ
Γ((n

Thus (2) is true.
(2) =* (3). Obvious.
(3) => (1). Assume that the convex hull of the range of μ is the

ball with centre 0, radius r. Since the range of μ is closed (see [1])
it includes every extreme point rx, for x e S™"1. But if μ(E) = rx,

<x, μ{f~\H9))> ^ <x, μ{E)y = r .

On the other hand | μ{f~\Hx)) \ ̂  r, so it follows that pμ(x) = r for
x 6 S^"1. Applying Lemma 3, we see that (1) is true.

REMARK. From the implication (3) => (2) of the above theorem,
it follows that if the convex hull of the range of a measure is a ball
with centre 0, then the measure is nonatomic, and the range is
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actually convex. In fact this can be seen directly, and does not
depend on the centre of the ball being 0. For if there were an atom,
the convex hull of the range of μ would have a straight edge—that
is there would be a line segment on the boundary of the convex hull
of the range. This is not the case when the convex hull of the range
is a ball, whence we conclude that μ is atom free, and has a convex
range.

We now turn our attention to characterizing measures with range
a ball whose centre need not be 0.

LEMMA 4. If μ is an Rn valued measure on X> then the range
of μ contains 0 and is symmetric about μ(X)/2.

Proof. The measure of the empty set is 0, and the map

μ(E) > μ(X - E)

is a symmetry of the range of μ about μ(X)/2.

LEMMA 5. Assume μ is an Rn valued measure on X, and that
F is a measurable set. Define the measure X on X by

X(E) = μ(E - F) - μ(E Π F) .

Set f = dμ/d \μ\ and g = dX/d \X\. Then a(f(\ μ |)) = a(g(\ X |)).

Proof. Clearly | μ \ = \ X | and g(t) = f(t) or g(t) = -f(t) depending
on whether t e X - F or t e F. Since a(x) = a( — x) it follows that
a(f(t)) = a(g(t)) for t e X. Since | μ | = | λ | the result follows.

THEOREM 2. Let μ be an Rn valued measure on X, and define
f — dμ/d\μ\. Let a be the natural projection of S^1 onto Pn~ι. A
necessary and sufficient condition that the range of μ be a ball is
that the measure a(f(\μ\)) on P%~1 be invariant under orthogonal
transformations. In this case the centre of the ball is μ(X)/2 and its
radius is (l/2π1'2)(Γ(n/2)/Γ((n + l)/2)) \\μ\\.

Proof. Without loss of generality we may assume that \\μ\\ = 1.
We may also assume that the range of μ is convex (see the remark
following Theorem 1). Thus there is a measurable set F with
μ(F) - μ(X)/2. Define X by

X(E) = μ(E- F) - μ(EnF) .

Notice that if E is any measurable set,
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X((E -F)V(F- E)) = μ{E) - μ(X)/2

and

X(E) = μ((E - F)\J(F- E)) - μ(X)/2 .

It follows that the range of λ is just the range of μ translated by
— μ(X)/2. Note also that X(X) = 0. The result now follows easily
from Theorem 1 and Lemmas 4 and 5.

We turn our attention now to the proof of Lemma 2. We shall
need to investigate certain properties of spherical functions. A more
general discussion of spherical functions on spheres can be found in
[4] and [2]. S""1 is a symmetric space (seen [2] for the definition
of symmetric spaces) and can be written as G/K where G and K are
the groups introduced earlier in the paper. Likewise Pn~ι is a sym-
metric space. For technical reasons part of our discussion will apply
only to the case n ^ 3, although the arguments could be suitably
modified to apply to the case n = 2. In any case Lemma 2 was
already proved for the case n = 2 in [3].

Since the G-invariant differential operators on S^1 are all poly-
nomials in the Laplace-Beltrami operator A (see [2] p. 397), a function
/ on S^"1 is a spherical function if and only if

( i ) / i s if-invariant (that is f(kx) — f(x) for ke K).
( i i ) f(xo) = l.

(iii) / is an eigenfunction of the operator Δ.
To determine the spherical functions we coordinatize S71"1 as follows.

A point x in S*1"1 is given coordinates (r9zuzz, •• ,2%_2) Here r is
the distance from x0 to x measured along the surface of S71"1 (that
is r is the angle between the vectors xQ and x, so that <(#0, x} = cos r).
If we project x onto the n — 1 dimensional plane orthogonal to the
vector x0, and then produce the corresponding vector until it intersects
the sphere in the plane, we obtain a point in Sn~~2. Then (zlf , zn_2)
are coordinates of this point in some local coordinates for Sn~\ In
this way we obtain coordinates for S""1 except at r = 0 or r = π.

Assume that on Sn~2 the Riemannian metric is Σ dijdZidZj, Then
clearly the Riemannian metric on S^-1 is dr2 + ( s inr) 2 ^ ctijdZidZj.
Denoting by (δ^ ) the (n — 2) x (n — 2) matrix inverse to (aiά) the
Laplace-Beltrami operator is given by

4- ! V d V h A d$

where A2 = det (aiά).
But if / is if-invariant it is a function only of r and we then

have
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Jf + { n 2 ) .
dr2 sin r dr

Now if / is a spherical function it satisfies Af + xf = 0 for some
complex number λ. Making a change of variables, we set f(r) =
φ(cosr) for some function φ. Then if / is a spherical function <£>
will satisfy

On the other hand suppose that φ is twice continuously differentiable
on [ — 1,1] and satisfies the above differential equation. The function
/ defined by f(x) = <£>(cos r) = φ{(x0, αζ» will then be twice continuously
differentiable on Sw~x and except at x0 and — xQ it will satisfy

Af + Xf = 0 .

By continuity this equation will also be satisfied at the exceptional
points. From the proof on p. 400 of [2] it can be seen that f(x0) Φ 0
unless / vanishes identically, so after a suitable normalization / is a
spherical function. We therefore seek solutions of the equation

( l - ί ) * £ - ( n - l ) t £ £ + **> = 0.
dt2 dt

If φ is a polynomial of degree k then necessarily λ = k(n + k — 2) as
is readily verified by checking the term of degree k. If we can show
that for every nonnegative integer k there is a polynomial φl~ι of
degree k which satisfies the equation with λ = kin + k — 2) and such
that φl~ι(l) — 1 (this last condition is equivalent to the corresponding
spherical function being 1 at xQ, and can be achieved by a suitable
normalization), then these φl~ι will give rise to spherical functions on
S*"1. Furthermore using essentially the argument on p. 404 of [2]
it can be deduced that all spherical functions arise in this way.

Notice that φ\ satisfies ^l(cos r) = cos kr. Thus

<Pl(t) - Σ (2J)ί*-2'(ί2 - I)'" .
Jgk/2

Notice also that φ\ is just the Legendre polynomial

φ\{t) -

By differentiating the differential equation, observe that

Ψl±l(t) = (constant) A φ :
dt
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Thus we have proved

THEOREM 3. The spherical functions on Sn~ι are the functions
f£-\x) = <Pk~\(®o, %}) where φl~λ satisfies

(1 - t 2 ) ^ - (n - \ ) A + k(n + k - 2)φ = 0 .
dt2 dt

φt"1 is a polynomial of degree k and φl~ι(l) = 1. Furthermore φl~ι

is an odd polynomial if k is odd, and is an even polynomial if k
is even. If k is even (respectively odd) and if j is an even (respec-
tively odd) integer, 0 ^ j rg k, then the coefficient of tj in the poly-
nomial φt~~ι(t) does not vanish. In particular ^"^(O) Φ 0 if k is even.

If μ is a if-invariant measure on Sn~x we recall that its Fourier-

Stieltjes coefficients are defined by μ(fΐ~γ) = \fk~ί(%)μ(dx) (see [2]).

Likewise the Fourier coefficients of Jf-invariant functions on S9*"1 can

be defined. We wish to investigate the Fourier coefficients of the

function ψ defined by ψ(x) = max (0, ζx0, X
s}).

LEMMA 6. For n ;> 3, f(fZ~l) Φ 0 if k is even.

Proof. Writing / for f%~1 and φ for φl~γ we have

Ψ(f) = \ Λf(x)f(x)m(dx)

= 1 max (0, cos r)^(cos r)m(dx)

= K\ max (0, cos r)φ(cos r)(sin r)n~2dr
Jo

where K is chosen so that K\ (sin r)n~2dr = 1. Thus
Jo

ψ(f) = κ[ max(0, t)φ(t)(l - t

= κ[tφ(t)(i - t2yn~3)l2dt.
Jo

Integrating twice by parts yields

[tφ(t)(l - t2Yn

Jo
τ^(O) +

n — 1 n — 1

n — 1
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Substituting from the differential equation

(1 - t2)φ"(t) - (n - l)tφ'(t) + k(n + k- 2)φ(t) = 0

we see that

(1 - k(n + k - 2)/(n - l))[tφ(t)(l - tjn-z)'2dt = — - — φ ( 0 ) .
Jo n — 1

B u t when k is even, <p(0) — φt~ιφ) Φ 0 so t h e desired conclusion
follows.

We now proceed w i t h t h e proof of L e m m a 2. T h u s assume t h a t
λ is a ϋΓ-invariant probabil i ty measure on Sn~ι such t h a t

yX(dy)
Hx

is independent of x. Let Kf be the subgroup of G consisting of
elements of G which map x0 into — x0. Pn~ι is then the symmetric
space G/K'. Since λ is ^-invariant it is clear that a(X) is iΓ'-invariant.
Thus to show that α(λ) and a(m) are equal it suffices to show that
they have the same Fourier-Stieltjes coefficients. But if h is a spheri-
cal function on Pn~ι it is clear that the map x —> h(a(x)) defines a
spherical function on Sn~\ It follows then that the spherical functions
on Pn~ι are given by h(a(x)) = fk~\x) for k even. To prove that
α(λ) = a(m) it thus suffices to show that \ifk~1) — m{fk^) for k even.
But m{f^λ) = Xif?-1) = 1 since both are probability measures, and
mifk"1) — 0 for k a positive integer. We must therefore show that
(̂/fc1"1) — 0 for k an even positive integer. Denote by μ the right

if-invariant measure on G which projects to the measure λ on Sn

(In the notation of [3] μ = λ). Then

x, \ vMdy)\ = I (y, x>X(dy)

= \ max (0, <>, gxQ»Mdy)

(where g e G is such that gx0 — x)

= \ max (0, <flf-1i/, xo»Mdy) = [ ir{g-ιy)X(dy)

n~\

where λ*^ is the convolution product of X and ψ on the symmetric
space Sn~\ Thus the hypotheses of Lemma 2 guarantee that X*ψ is
a constant function on S™"1 and so its Fourier coefficients vanish
except at the spherical function fQ

n~\ Thus 0 = ψifk^Xif^1) for k
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a positive even integer, so on account of Lemma 6, λ(/^ - 1) = 0 for
k an even positive integer. This completes the proof of Lemma 2.
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