
Pacific Journal of
Mathematics

A CHARACTERIZATION OF RESTRICTIONS OF
FOURIER-STIELTJES TRANSFORMS

HASKELL PAUL ROSENTHAL

Vol. 23, No. 2 April 1967



PACIFIC JOURNAL OF MATHEMATICS
Vol. 23, No. 2, 1967

A CHARACTERIZATION OF RESTRICTIONS OF
FOURIER-STIELTJES TRANSFORMS

HASKELL P. ROSENTHAL

The main result that we prove here is as follows: Let E
be a Lebesgue measurable subset of R, the real line, and let
φ be a bounded measurable function defined on E. Then the
first of the following conditions implies the second:

(1) There exists a constant K, so that

Σ K\\P\
3=1

for all trigonometric polynomials of the form

n

P(y) = Σ Cjβixjy, where Xj e E for all 1 g j Sn.
3=1

(2) φ is jE'-almost everywhere a Stieltjes transform. Pre-
cisely, there exists a finite (complex Borel) measure μ, so that

φ{x) = μ(x) = 1 e~ι

J—oo

ydμ(y)

for almost all x e E. Moreover, μ may be chosen such that
\\μ\\ ^ K, where K is the constant in (1). (\\ μ\\ denotes the
total variation of μ.)

In 1934 (c.f. [3]), Bochner established this result for the case
when E is the entire real line. Our result also generalizes a theorem
of Krein. Indeed Krein proved (c.f. [1] pp. 154-159) that (1) and (2)
are equivalent for the case when E is an interval and φ is a con-
tinuous function defined on E. Now if we assume that E is closed
and of uniformly positive measure, (meaning that if U is an open
subset of R with U Π E nonempty, then the measure of U Π E is
positive), and if φeC(E) and satisfies (1), then our result implies
that (2) holds for all xeE. (i.e. φ = β | E ΐor some finite measure μ
on R). (It is trivial that (2) implies (1) under these hypotheses.)

Note finally that it E is a closed subset of Γ, the circle group,
of uniformly positive measure, and if ψ e C(E) and satisfies (2), then
φeA(E). That is, φ can be extended to a function defined on all of
Γ, with absolutely convergent Fourier series. (We identify T with
the real numbers modulo 1; in this case, the polynomials of condition
(2) are almost-periodic functions defined on the integers.)

We obtain our main result by first proving the result mentioned
in the above paragraph in Theorem 3; next by establishing the ana-
logue of the main result for T in Theorem 4, and finally by passing
from the circle to the real line in §3.
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404 HASKELL P. ROSENTHAL

The core of the proof of Theorem 3 is found in Lemma 2; the
technique used there was suggested by a method due to C. S. Herz,
as exposed in Theoreme VII, pp. 124-126 of [4]. An essential step
in the proof of Lemma 2 is Lemma 1, where we show that a measur-
able subset of T may be approximated in measure by nicely-placed
closed subsets1.

1* Preliminaries* The following two results are not essential
for the main result, but they do provide some motivation for it. We
let Z denote the integers; if μ is a finite measure on R (resp. T),

| |£|U = supβe* I β(x) I (resp. supw e* I β(n) | where μ(n) = ̂ e-i2κntdμ(t) for
Jo

all neZ).

PROPOSITION A. Let E be an arbitrary subset of R (resp. Γ),
and let φ be a bounded function defined on E. Then the following
two conditions are each equivalent to (1).

(3) There exists a constant K, so that

I \φdμ

for all discrete measures μ supported on E.
(4) There exists a finite (complex regular Borel) measure v de-

fined on the Bohr compactification of R (resp. of Z), so that φ{x) =
v(x) for all xeE.

The fact that (1) and (3) are equivalent is a triviality. The
equivalence of (1) and (4) is a consequence of the Riesz-representation
theorem, together with the fact that the almost-periodic polynomials
on R (resp. Z) may be regarded as being dense in the space of con-
tinuous functions on the Bohr compactification of the respective groups.
(See [5], pp. 30-32, for these and other properties of the Bohr com-
pactification).

For the next proposition, we recall that for E a closed subset of
T,A{E) is the set of all φeC(E) for which there exists an /eC(T),
such that f(x) = φ(x) for all xeE, and Σ~=-~|/(w)l < °°. A(E) is
a Banach algebra under the norm

l l 9 > I L ω > = i n f J Σ \f(n) \ :feA(T) w i t h f \ E = φ } .

PROPOSITION B. Let E be a closed subset of T such that if

1 Benjamin Halpern independently discovered a different proof of Lemma 1, and
we are indebted to him for a stimulating discussion concerning this result.
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φeC(E) and φ satisfies (3), then φeA(E). Then there exists a
finite constant K, so that for all feA(E),

11, where

the supremum= sup fdμ

being taken over all discrete measures μ supported on E with

Proof. i|| ί|| defines a new norm on A(E), and we have that
III/HI ^ ll/IUum for all feA(E). Now our hypotheses imply that
A(E) is complete under this norm also. Indeed, suppose {fn} is a
Cauchy sequence in the norm 111 111. Fix x e E, and let μx be the
measure assigning a mass of one to x. Then || ^ [̂  = 1, so we have
that

IIΛ

for all integers n and m. Hence, {/„} is a Cauchy sequence in C(E),
so {fn} converges uniformly to a continuous function φ. Also, since
{fn} is a Cauchy sequence in 111 111, there exists a constant K so that
\\\fn HI ίg K for all %. This means that

for all discrete measures μ.
have that

lim

Now fixing μ a discrete measure, we

Hence φ satisfies (3), so φ e A(E) by hypothesis, whence

l i m | | | Λ - 9 > | | | = 0 .

Thus, since A(E) is a Banach space under the weaker norm ||| | | |,
we have that ||j || | is equivalent to the norm || \\Λ{E).

REMARK 1. Walter Rudin has constructed a closed independent
set E which supports a measure whose Stieltjes transform vanishes
at infinity (see [6]). Such a set does not satisfy the conclusion of
Proposition J3, since the independence of E implies that | | | / | | | = H/IU
for all feA(E), whereas the set cannot have its C(E) and A(E) norms
equivalent (cf. [5], pp. 114-120).



406 HASKELL P. ROSENTHAL

REMARK 2. It follows from a theorem of Banach (Theorem 2,

p. 213 of [2]), that the conclusion of Proposition B is equivalent to

the following: if FeA(E)*, then there exists a sequence of discrete

measures μn such that μn tends to F'm the weak * topology of A(E).

{A{E)* denotes the conjugate space of A) the definition of A(E) imples

that if μ is a measure supported on E, then \\μ\\A{E)* = | |μϋ~, where

II μ \\A[E)* = S U P \fdμ , the supremum being taken over all feA(E)

with H / I U ^ l .

In the terminology of [4] (cf. p. 115), our Theorem 3 thus implies
that if E is of spectral synthesis and of uniformly positive measure,
and if S is a pseudo-measure carried by E, there exists a sequence
of linear combinations of point masses carried by E and tending
weakly to S.

We note finally, that Proposition A holds for arbitrary locally
compact abelian groups, and Proposition B holds for compact subsets
of I.e.a. groups.

2* Throughout this section, E denotes a subset of T of positive
Lebesgue measure; m denotes Lebesgue measure on T (with m(T) = 1);
if S and T are two subsets of Γ,

S + T = {s + t:seS and teT} .

If f is a Lebesgue-integrable function defined on a closed set
Eu and if φ is a bounded measurable function defined on a closed
set E2, we recall that the continuous function φ*ψ, defined by

(φ*f)(y) =\<p(y- x)f{x)dx for all y e T ,
Jo

is supported on the set Eλ + E2.
Finally, if S is a subset of Γ, χs denotes the characteristic func-

tion of S. i.e.

χa(y) = 1 if yeS χa(y) = 0 otherwise .

LEMMA 1. Given E and δ > 0, for all sufficiently large integers
N there exists a closed subset Fr c E, depending on N, with m(Fr) ^
(1 — δ)m(E), so that for some 0 ^ β < 1/JV, each of the numbers
β + k/N, k = 0, 1, , N — 1; either belongs to F', or is a distance
at least 1/N away from F'.

Proof. Let ε > 0 be given. Then we may choose a closed set
FaE, so that m(F) ^ m(E)(l — ε), and so that for all insufficiently
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large,

(We may accomplish this by simply choosing a finite number of dis-
joint closed intervals which approximate E closely in measure. Pre-
cisely, if S and T are two subsets of T, let

SAT = (So ΐfT) u (&sn T).

First, choose Ft a closed subset of E, with m{EAF^ < (ε/2)m(E).
Next, choose Iu , Ip disjoint closed intervals with

m(FλΔ U iλ < ^ m ( ^ i ) ,

where e' = min {ε, 2e/(2 + ε)}. Finally, let

3=1

then the desired inequalities hold for all integers N ^ (ip/em(F)).
Now fix such an N; then

Let g be defined on [0,1/N) by

Then

g(x)dm(x) =

o

Since #(#) ̂  0 for all a?, we must have that g Ξ> (1 — ε)m(F) on a
set of positive measure; thus, we may choose a β,0 <z β < (1/N),
with

flf(/S) ^ (1 - e)m(F) .

Now consider the family of intervals,

for fc = 0,1, , # - 1 .

We remark that if feF belongs to one of these intervals, then the
entire interval is contained in the set F + [ — 1/N,1/N]. (Of course,
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T equals the union of these intervals).
Thus, let SΓ be the subset of {0,1, , N - 1} so that

if and only if Ik contains a point of F. Then

N NΛ

Hence if r is the number of elements in 3ίΓ > we have that

m(F) ^ -L <ς m(F)(l + ε) .

Now, let

— {Ik:ke 3ίΓ and both end points of Ik belong to F} .

We shall show that J? is nonempty; in fact, letting I be the cardinality
of ^ , we shall show that I is very close to r.

First, let
3T' = {ke Jf: β + (k/N) e F}; let q be the cardinality of

Then (q/N) = g(β).
Now, let

= \ke JΓΊ β 4τ«N

and let s be the cardinality of JίT". Noticing that feeX" if and
only if β + (A /iV) is ^oί a left-hand end point of an interval in
we thus have that q ~ s — I.

Now to each k e 5>Γ" corresponds a unique member of 3ίΓ Π
namely the least of the numbers q e 5ίΓ such that q > k if there are
such numbers; otherwise the least number in J%Γ. (Recall that β —
β + 1, as members of T.) Thus

card J T " ^ card ( J T n

But

" u ( j r n ̂ ^ r ' ) u (^r' n

Hence s + s + g — s ^ r . Thus, g + s ^ r. Hence, since s = q — I,
we obtain that r — I ^ 2(r — q). Now, let

Then ί7' has the property that each number β + (k/N) belongs to
JF7', or is a distance at least 1/N away from F'. For if /3 + (A/ΛΓ)
is not an endpoint of an interval Je ^ , then β + (k/N) is at least
distance 1/N away from the nearest point in ^f. Moreover, Fr was
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obtained by removing at most r — I intervals from F', each of length
1/N. Thus, recalling that

we have that

and ± ^ m(F)(l - ε) ,

m(Ff) ^ m(F) - - ^ m(F) - 2( r ~ q

N ~ v ' \ N

:> m(F)[l - 2[(1 + ε) - (1 - ε)]]

= m(F)(l - 4ε) ^ m(E)(l - 4ε)(l - ε) .

Thus, given δ > 0, we simply choose ε so that

(1 - 4ε)(l - ε) ^ (1 - δ) .

REMARKS. We note incidentally that l/N provides a good ap-
proximation to m(E), since

m(E)(l + ε) ^ X; ^ A ^ m(F') ^ m(^)(l - 4ε)(l - ε) .

This shows that given ε > 0, we may, for all N sufficiently large,
give an upper estimate to m(E) — ε by considering some system of
equally spaced intervals of length l/N, then adding up the lengths
of all these intervals such that both their endpoints belong to E.

The next lemma is directed toward showing that if φ is a meas-
urable function satisfying (3), then φ also satisfies (3) for a larger
class of measures supported on E. (See the first line of the proof of
Theorem 3.)

LEMMA 2. Let φ be a bounded measurable function defined on
E. Then there exists a sequence of discrete measures {vM} supported
on E, so that

\\vM\\ ^ | | ς p | | ~ for all M, with

and

lim vM(l) = φ(l) for all integers I.
M-*oo

Proof. Fix M an integer. Since φdm is absolutely continuous
with respect to m, we may choose a S > 0 so that if K is a Lebesgue
measurable set with m(K) ^ §, then
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\ \φ\dm< -i-H^iμ .

(Of course we assume that | | ^ | | i > 0.) Now by Lemma 1, we may-
choose a closed set F c E, an integer N Ξ> M, and a number 0 ^
β < (1/JV), so that m(E Π ί^i77) ^ S, and so that each of the numbers
β + (k/N), for fc = 0,1, , N — 1, either belongs to F, or is a
distance at least 1/N from ί7. Let φ' be the restriction of φ to i*7,
i.e. φ' = ̂ χF.

Let mjŷ  be the discrete measure supported on {β + (k/N)}%~o,
and which assigns mass l/AΓ to each of the points β + k/N.

Now let zf̂  be the function whose graph is an isosceles triangle
of height N and base [-1/iV, 1/N]. Finally, let

Now, since z/^' is supported on F -\- [-1/N, 1/N], it follows that
vM is supported on F. Moreover,

H4rlli = l, | | 9 > Ί U ^ I | 9 | | - , and | | m ^ | | = l ;

hence

For the next two assertions of the Lemma, we need the follow-
ing easily established properties of ΔN and mNβ:

(a) ^ ( i ) ^ 0 for all j .
(b) Σ Γ — ^ ( i ) = ̂
(c) Σ7«— 4,(ϊ + jΛΓ) = 1 for all integers I.
(d) l i m ^ Δά(l) = 1 for all Z.
(e) mNβ(j) = 0 iί j is not a multiple of N; otherwise,

We thus have, for all integers I, that

vM{l) - [{ΔN*φf)mNβΓ{l)

= Σ

Hence,

I ̂ ( i ) I ̂  sup I ̂ ' ( ί - jN) 1 Σ I ΔN(l - jN) \£\\φ' |U .

By the first two statements of this proof, we have t h a t

l l ^ - ^ Ί I i < - - ~ l l £ I U ,
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from which it follows that

ιι^n-^(1 + i f ) 11*11-

hence the second assertion follows. Finally, we fix I an integer; then

I vκ(i) - Φ(i) I

= I ΔN{l)ψ\D ~ Φ(l) + Σ Ml - JN)φ'(l - j

^ ΔN{1) I Φ'd) - Φ(i) 1 + (i - Mi)) I Φ(i) I
+ sup ] ψ\l - jN) I Σ Ml - J

(The last inequality follows from (c) and the fact t h a t | | ^ ' | U ^
2||<p||oo.) Hence by (d), we have t h a t lim^co vM{l) = φ(l) for all in-
tegers I.

THEOREM 3. Let E be a closed subset to T of uniformly posi-
tive measure. Then if ψe C(E) and if ψ satisfies condition (3) with
the constant K, there exists an feA with \\f\\A<^K, and with

Proof. First, the hypotheses together with Lemma 2 show that

\ψφdm

for all bounded measurable functions ψ supported on E.
Indeed, fix such a φ, and choose {vM} a sequence of discrete

measures supported on E and satisfying the conclusion of Lemma 2.
Since the total variations of the sequence are uniformly bounded, it
follows that vM tends to φ in the weak* topology of C{E)*. (Some
subsequence converges by Alaoglu's theorem, but any convergent sub-
sequence must converge to φ by the uniqueness of Fourier-Stieltjes
transforms.) Hence,

lim \ψdvM = \φψdm .
Jf-oo J J

Thus,

\ φ ψ d m = l i m | ψ d v M \ fj l i m K \\ vM !!«, ̂  K \ \ φ \

Now, let X be the subspace of co(Z), the sequences on the
integers vanishing at infinity, defined as
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X = {φ : φ is a bounded measurable function, defined on E) .

Now define F a linear functional on X by

F(φ) — \ψφdm .

(Since φx = φ2 if and only if φx = φ2 a.e., F is well defined.) Thus
F is a bounded linear functional on X; so by the Hahn-Banach theorem
and the fact that co(Z)* may be identified with L\Z) (the space of
all absolutely convergent sequences), there exists an feA, with
\\f\\Λ^K, so that

F(Φ) = Σ Φ(n)f(-n) = \fφdm

for all bounded measurable φ supported on E. The last equality shows
t h a t / = ψ a.e.; since ψ is continuous and E is of uniformly positive
measure, this implies that f\E = ψ

We are finally prepared to establish the analogue of our main
result for the circle group T.

THEOREM 4. Let ψ be a bounded measurable function defined on
E, and satisfying (3) with constant K. Then there exists an feA
with II/IU ^ K, and such that

f{e) = ψ{e) for almost all e e E .

Proof. By Lusin's theorem, given an integer N, we may choose
F a closed subset of E, with m(E n &F) < (1/JV), so that ψ \ F is
continuous; let ψN denote ψ \F. We may also assume that F is of
uniformly positive measure, by simply taking N large enough and
replacing F by the support of the measure χFdm, if necessary.

For each N, ψN satisfies the hypotheses of Theorem 3, with
constant K. Hence we may choose an fNeA, with \\fN\\A^ K and
fN \F = ψNm Again by Alaoglu's theorem, since the fN's are uniformly
bounded in co(Z)*, there exists a function τ defined on Z and a sub-
sequence fNj of the /i/s, so that

- Σ \τ(n)\£K,

and so that

lim Σ hλn)β(-n) = Σ τ(n)J3(-n)
j*—oo n=—OΛ n — —oo

for all βeco(Z). Thus, let
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f(x) = Σ τ(n)e2πinx

for all xeT; then \\f\\A ^ K, and

lim \fN.φdm — \fφdm

for all bounded measurable functions φ defined on E. But fix such a
φ; then

lim \fNφdm — \ψφdm
N *°° J J

indeed, for fixed N, taking the corresponding F as in the first state-
ment of this proof, we have that

\\fN-ψ\φdm= \ \fN-ψ\φdm^±-(K+ || ψ ||TO) || φ \\» .

Hence, ψ — f a.e. an E.

3. Proof of the main result• We first have need of the follow-
ing lemma, showing that the Stieltjes transform of a finite compactly
supported measure on the real line may be nicely approximated by its
values on a discrete subset.

LEMMA 5. Given ε and N > 0, there exists an M > 0, so that
ifL^M and if v is a finite measure supported on [ — N,N],

sup I v(x) I <̂  (1 + e) sup
6i2 jβ if)

Proof. We first note that given λ real number, there exists
feU(R) with /(*) = eUx - 1 for all \x\ ̂  N, and such that
6 I λ I N. For example, let

for all real x, and set

f{x) = J- (k(x + λ) - k(x))
Δ7Z

for all real x.
(To see that / has the desired properties, one may use an argu-

ment analogous to that given in the proof of 2.6.3, page 49 of [5].
Briefly, for | y \ <̂  N, we have that
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2N

f(y) = (eiλ" - I!

by the inversion theorem. Now

f(χ) = _ _ β

•Xι-N,in*Xι-2N.2Ni(y) = 1; hence

2π

J_ 1 ((il.
2π 2N

Hence by the Plancherel theorem and the Schwartz inequality,

ll/lli ^ sup I e*» - 11

sup+ ^
2N

^ 3i/Ίf I λ I 2V

thus the constant " 6 " could be replaced by the constant "3i/ΊΓ".)
Now, suppose L > 6πiNΓ, v is supported on [ — N, N], and fix x a

real number. Let j be the integer such that

Next, choose / as in the first statement of the proof, with
and let fx{y) = /(y — (πj/L)) for all real T/. Then

= (πj/L) —

Hence,

N

(
-N

v(t)Λ(t)dt

^ sup if)
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Thus, since x was arbitrary,

415

1 - 6Nπ
sup

So, given ε > 0, simply choose M so that L ΪΪ M implies that

1

1 -
6Nπ

1 + ε .

REMARK. Our proof shows that the conclusion of Lemma 5 holds
not only for Stieltjes transforms, but for any bounded continuous
function φ whose spectrum is supported on the interval [ — N, N], i.e.
we obtain that

sup I φ(x) I <. (1 + ε) sup
jez

for all L ^ M.

Proof of the main result. (All terms are as defined on the first
page of this paper.)

Fix N an integer; by Lemma 5, we may choose L > N so that
if v is a finite measure supported on [ — N, N], then

sup I v(x) I g ( l + 1) sup ί)(ψ
χ€R \ iv/ jez \L

We assume that ψ satisfies condition (1), or equivalently, condition
(3); let φN — φ Unc-iv,iV]. ΨN may be considered as being defined on a
closed subset of the reals modulo 2L; we then have that if v is a
discrete measure supported on E π [ — N, N]

IS φdv ^ iίsup I v(x) I ̂  κ(l + —) sup
xβR \ N J jez

Applying the obvious version of Theorem 4 for the reals modulo 2L
instead of the reals modulo 1, we obtain that there exists a sequence
{aό} with

Σ k l < (l + 1

3 — °° \

such that

φN(x) =
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for almost all x e E Π [ — N, N].
Now let μN be the discrete measure which, for each integer j ,

assigns mass a_ά to the point (π/L)j; then φN — μN a.e. on E Π [ — N, N],
and \\μN\\^(l + (l/N))K.

Finally, by Alaoglu's theorem, since the finite measures on R
may be identified with the adjoint of CQ(R), the Banach space of
continuous functions vanishing at infinity, we may choose a finite
measure μ, with \\μ\\ <L K, and a subsequence {μNj} so that

\fdμ = lim \fdμN

for all feC0(R). Now if g is a continuous function with compact
support, then

j(x)φ(x)dx

S CO

S oo [-co poo ^

g(x)dμN(x) = I g(x)dμ(x) = I g(x)μ(x)dx .
_ o o J J_oo J—oo

Hence μ — φ a.e.

REMARK. For the sake of simplicity in notation, we have only
considered the one-dimensional case. However, all our results also
hold in the context of Rp and Tp for all p > 1. We indicate briefly
the necessary changes in the notation and arguments.

We identify Tp with R*/Z*, and endow both Tp and Rp with
the sup of coordinates metric. If a and b are real numbers, we define
the half-open p-dimensional interval

[α, b)p = {xe Rp: x = (a ,̂ •••,#„) and a ^ xd < b for all 1 <£ j»* <J ^} .

Similarly, we define closed and open intervals. If xeRp and n e Zp,
we define

xn = nx = nγxγ + + npxp .

We then replace "Z", "R" and " Γ " by " Z 3 1 " , "JB*", and "T*"
respectively, throughout the paper. Where summation indices run
over Z, we thus allow them to run over Z p , and where integrals are
taken over intervals, we take them over p-dimensional intervals.
With these changes, the statements and proofs of Theorems 3, 4, and
the main result are exactly the same; a few more modifications are
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required for the proofs of the three lemmas, as follows:
In Lemmas 1 and 2, we take β to be a point in [0, 1/N)P. In

the proof of Lemma 1, we allow the indices "k" to range over all
k e Z p s u c h t h a t k = (k19 •••,&„) a n d 0 ^ k s < L N — l f o r a l l l<^j <,p.
For each such k, we define

k N~

^ is then defined to be all intervals such that all of their endpoints
belong to F; i.e.

j? =<Ik: for all xeZp such that x3 = 0 or 1 for all j ,

we have that β + k + x e F\ .

Exactly the same definitions are given for jfΓ and 3ίΓ', then J%Γ"
is defined as

"': there exists an xeZp with x3 — 0 or 1 all j ,

so that β + ——^- g .
iV

We may then correspond to each member of 3ίΓ" a member of
Π ^JίΓf as follows:
Given k^3ίΓ", choose xeZp with xό = 0 or 1 for all j , such

that /3 + ((k + x)/N) ί F. Now let I be the least integer with
1 <^ I <z N — 1 so that there exists a g e J^T and an me Zp with
k + Ix ~ q = Nm (i. e. such that k + Ix = q mod iVZ25); then
g G ̂ ^ Π ̂ L5^*', so we correspond q to k.

Given such a g and such an a;, A is uniquely determined by the
relation k ~ q — Ix mod ΛΓZ2', where i is chosen to be the least integer
with lS-l^N-1, so that β + ((q - lx)/N) e F.

However, for different x's, we may have different yfc's in j ^ " " "
corresponded to the same g in ^g^ n ^L5Γ"'. Since there are at most
2P — 1 such a 's (Xj must equal 1 for some j), it follows that

— card 3ίΓ" ^ card (JίΓ Π

We thus obtain that r — I ^ 2p(r — q), where r, I, and g are as defined
in Lemma 1; the term "4ε" must then be replaced by the term "2 p 4 l s" .

One other modification is required: in all rational numbers having
N as denominator (and not having a "k1' as a numerator!), we replace
"JNΓ" by "Np". Thus the function g(x) is defined on [0, 1/N)), by
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we then have that

Np \ gdm = m(F) .
J[O,l/tf)p

For the proof of Lemma 2, we replace the function ΔN by the
function

mNβ is then defined as the discrete measure which assigns mass 1/NP

to each of the points β + (k/N), where k = (klf , kp) and 0 ^ kq ^
N — 1 for all 1 <̂  g ^ p. Exactly the same proof then holds.

Finally, in the proof of Lemma 5, the number " 6 " should be
replaced by a constant K that depends only on p. (Of course, λ is
taken as a point in Rp, with | λ | = s u p ^ ^ | λ, |.) An example of a
function with the property given in the first line of the proof of
Lemma 5, may then be obtained by setting

for all x e Rp, and then putting

f(x) = _L_(/c(χ + λ) - k(x)) for all x e Rp .
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