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The purpose of this paper is to establish a characterization
of the continuous images of all pseudo-circles, and develop
techniques which may be used in the further investigation of
the mapping properties of pseudo-circles. The principal con-
clusions drawn in this paper from this characterization are
the theorems that every planar circularly chainable continuum
is the continuous image of a pseudo-circle and every snake-like
continuum is the continuous image of a pseudo-circle.

The class of pseudo-circles may be defined to be the class of

hereditarily indecomposable circularly chainable continua such that, if
M is a pseudo-circle, then M is the intersection of the sets of points
of a sequence D19 D2, D3, of circular chains having the properties
that: (1) Di+1 is crooked in Dif i = 1, 2, 3, , (2) Di+1 has unit
winding number in D^ i — 1, 2, 3, and (3) the mesh of D{ approaches
zero as ί increases without bound. Thus, every nondegenerate proper
subcontinuum of a pseudo-circle is a pseudo-arc and every pseudo-circle
can be embedded in the plane. In view of the relationships between
pseudo-arcs and pseudo-circles and the fact that pseudo-arcs are known
to have important mapping properties, a number of questions have
been raised in the literature regarding the mapping characteristics of
pseudo-circles.

We now amplify the foregoing statements. In a recent paper [6]
the author has established a global characterization of the continuous
images of the pseudo-arc [1], [8], [11] which is similar in certain respects
to the well known Hahn-Mazurkiewicz characterization of the continu-
ous images of the arc. This result, which was also established inde-
pendently by A. Lelek [9], constituted an answer to a question raised
by R. H. Bing at the Summer Institute on Set Theoretic Topology, 1955
[3]. In addition, this characterization proved to be useful in [6] in
showing that there does not exist any local topological property which
characterizes the continuous images of the pseudo-arc. Furthermore,
in a subsequent paper of this author [7] the characterization of the
continuous images of the pseudo-arc was used to establish properties
of topological operations on the class of continuous images of all
snake-like continua.

The purpose of this present paper is to establish a corresponding
characterization of the continuous images of all pseudo-circles [2, p. 48]
This characterization will be expressed in a manner which is formally
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similar to that given for the continuous images of the pseudo-arc in
[6]. However, the development of this result involves establishing
preliminary theorems on cyclic orderings, winding numbers of circular
p-chain refinements and the composition properties of crooked and
noncrooked cyclic r-patterns. In addition a concept of linear repre-
sentation of a cyclic r-pattern which is similar to the concept of
universal covering space is introduced and used strongly in proving the
principal preliminary theorem of this paper. Thus the development of
this characterization of the continuous images of all pseudo-circles is
substantially different from that of the characterization of the continu-
ous images of the pseudo-arc. Among the further results presented
in this paper is the theorem that every planar circularly chainable
continuum is a continuous image of a pseudo-circle. This latter result
is analogous to the corresponding theorem for the pseudo-arc obtained
by J. Mioduszewski [10] and this author [6], It is also proved that
all snake-like continua are continuous images of pseudo-circles.

2* Preliminaries• The more standard terms used in this paper
are defined in [12] or in the other appropriately indicated references.
In addition, we shall define a number of special terms to be used
throughout this paper. In general, these terms and notations were
suggested by those used by Bing in [1] and [2] and those used by
the author in [6].

It will be convenient in this development to use a modified form
of the standard modular notation for cyclic systems. Specifically, the
notation k mod n, where A: is a nonnegative integer and n is a positive
integer, will be used to denote the remainder obtained in dividing k by
n. Thus, for example, the relationship n = 0 (mod n) will be written
n mod n = 0 in this paper to facilitate the presentation of results
which involve more than one cyclic system.

DEFINITION 1. A p-chain will be defined to be a finite sequence
of sets each of which, except the last, intersects its successor in the
sequence. A circular p-chain will be defined to be a p-chain in which
the first and last links intersect. The members of the p-chain or
circular p-chain will be called links and the notations P = P(0, n) =
(ϊ>o> Pu > Pn) will be used to denote the p-chain or circular p-chain
whose links are p0, ply , pn.

DEFINITION 2. A function / defined by a collection of ordered
pairs of integers ((&, /(&)), (k + 1, f(k + 1)), ••-,(& + %,/(& + n))) will
be said to be an r-pattern if | f(i) — f(j) | <; 1 whenever | i — j | ^ 1,
k^i,j^k + n. If g = ((0, g(0)), (1, g(l))9 . . . , (n, g(n))) has range
(0,1, , m), for some positive integer m, and | g(i) — g(j) \ mod m ^ 1
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whenever \i — j \ mod n ίg 1, 0 ^ i, j ^ n, then g will be said to be a
cyclic r-pattern.

DEFINITION 3. If P = (p0, p1? , pn) and Q = (g0, ^ . , g J are

^-chains such that each link p{ of P is a subset of some link qf{i) of
Q and the sequence / of ordered pairs ((0,/(0)), ( !,/(!)), •••, (n,f{n)))
is an r-pattern with range (0,1, , m) then / will be said to be an
r-pattern of P in Q. If P and Q are circular p-chains and / is a
cyclic r-pattern then / will be said to be a cyclic r-pattern of P in Q.

DEFINITION 4. Two cyclic r-patterns

and

will be defined to be similar if / and g have the same set (0,1, , m)
as range and these is an integer k such that one of the following two
conditions holds:

( a ) f(i) = {h + g(i)) mod (m + 1), 0 ^ i ^ ra,
( b) /(ΐ) = (Λ, - g(i)) mod (m + 1), 0 ^ i ^ n.

DEFINITION 5. Two cyclic r-patterns

and

flr = ((0, flr(0))f (1, flr(l)), - , (n, g(n)))

will be defined to be equivalent if / and g have the same set (0,1, , m)
as range and there is an integer h such that one of the following two
conditions holds:

( a ) f(i) - g((h + i) mod (n + 1)), 0 ^ i ^ n,
( b ) f(i) - g((fe - i) mod (w + 1)), 0 ^ i ^ n.
If / and ί/ are cyclic r-patterns such that either g is equivalent

to a cyclic r-pattern similar to / or g is similar to a cyclic r-pattern
equivalent to /, then g will be referred to as an adjustment of / .
We note that each of the relationships "similarity", "equivalence" and
"adjustment" are equivalence relationships.

DEFINITION 6. If / - ((0, /(0)), (1, /(I)), , (n, f(n))) is a cyclic
r-pattern with range (0,1, * ,m), then the sequence of ordered pairs
of integers ((/(0), /(I)), (/(I), /(2)) , . . . , (f(n - 1), f(n)), (f(n), /(0))) will
be said to be the characteristic sequence of / and will be denoted by
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C(f). The occurences of the ordered pairs (m, 0) and (0, m) in C(f)
will be referred to as the positive transitions of / and the negative
transitions of /, respectively. The number of positive transitions of
/ minus the number of negative transitions of / will be said to be
the winding number of /. In this development the cyclic r-patterns
whose winding numbers have unit absolute value will be of particular
importance. A cyclic r-pattern whose winding number has absolute
value equal to 1 will be said to be a monocyclic r-pattern.

DEFINITION 7. If / is a cyclic r-pattern such that /(0) = 0, then
/ will be said to have canonical form. Let / be a cyclic r-pattern
having canonical form and let a and b be elements of the domain of
/ such that 0 < a < 6 and such that no integer of the sequence
/(α),/(α + 1), •••,/(&) is zero. Then the sequence of ordered pairs
of integers (α, /(α)), (α + 1, f(a + 1)), , (6, /(&)) will be defined to
be a primary r-pattern of /,

DEFINITION 8. If / = ((0,/(0)), (1,/(1)), •••,(%,/(%))) is a cyclic
r-pattern with range (0,1, , m) and

g = «k, g(k)), (k + 1, g(k + 1)), , (k + ί, g(k + t)))

is an r-pattern such that (1) n g t and (2) \f(i) — g(j) | mod (m + 1) = 0
whenever i is the least nonnegative integer such that

I i - j I mod (n + 1) = 0, k ^ j ^ k + t ,

then g is defined to be a linear representation of /.

DEFINITION 9. A p-chain P will be said to be a refinement of a
p-chain Q if there is an r-pattern of P in Q. If P is a circular
p-chain which has a cyclic r-pattern in a circular p-chain Q then P
will be said to be a circular refinement of Q.

The following types of refinements and circular refinements will
be distinguished:

DEFINITION 10. A p-chain P will be said to be a normal re-
finement of a p-chain Q if there is an r-pattern

/ - ((k, f(k), (k + 1, f(k + 1)), , (k + n, f(k + n)))

with range (ft, h + 1, , h + m) of P in Q such that f(k) = ft and
/(fc + w) = ft + m. If a p-chain P has an r-pattern / in a p-chain
Q and each link p{ of P is the same set as the link qf{i) of Q, then
P will be defined to be a principal refinement of Q. A p-chain P
will be said to be a crooked refinement of a p-chain Q if there is an



CONTINUOUS IMAGES OF ALL PSEUDO-CIRCLES 495

r-pattern / of P in Q such that if i and j are integers of the domain
of / , i < j and | f(i) — f(j) | > 2, then there are integers u and v with
the properties that i<u<v <j, \ f(u) — f(j) | g 1 and | f(v) — f(i) | ^ 1.
If / is an r-pattern having the properties described in the definition
of "crooked refinement" we shall refer to / as a crooked r-pattern.

DEFINITION 11. If P is a circular p-chain having a cyclic r-pattern
/ in a circular p-chain. Q, and each link p{ of P is the same set as
the link qf{i) of Q, then P will be said to be a principal circular
refinement of Q. A circular p-chain P will be said to be crooked in
a circular p-chain Q if there is a cyclic r-pattern / of P in Q such
that whenever g is an adjustment of / having canonical form and r
is a primary r-pattern of #, then r is a crooked r-pattern. We shall
refer to a cyclic r-pattern / having the properties described in the
definition of "crooked refinement" for circular ^-chains as a crooked
cyclic r-pattern.

In any type of refinement of a p-chain P in a p-chain Q, there
may be several r-patterns of P in Q having the appropriate properties.
However, in referring to a refinement whose existence has been hy-
pothesized or otherwise established, we will assume that a particular
r-pattern has been chosen and that this r-pattern will remain fixed
throughout the given argument. Thus, in these circumstances, we
will speak of "the" r-pattern of a p-chain P in a p-chain Q. A similar
assumption will also be made with respect to circular refinements.

The concept of circular p-chainability of a continuum is now
introduced.

DEFINITION 12. A continuum H will be said to be circularly
p-chainable if there is a sequence Pl9 P2, P3, of circular p-chains
such that for each positive integer i:

(a) The union of the elements of P{ is H.
(b) There is a monocyclic r-pattern Pi+1 in Pi%

(c) The diameter of each link of P, is less than 1/i.
(d) The closure of each link of Pi+1 is a subset of the link of Pt

to which it corresponds under the monocyclic r-pattern of Pi+1 in P{.
A sequence of circular p-chains PX1 P2, P3, having these proper-

ties with respect to the continuum H will be said to be cyclically
associated with H.

It will be shown that the property of circular p-chainability is
a characterizing property of the class of continuous images of all
pseudo-circles. This property will also be of fundamental importance
in the development of the related results mentioned in the introductory
section of this paper.
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3* Properties of cyclic r-patterns* In this section, we shall
establish the principal combinatorial properties of cyclic r-patterns.
These results will be used strongly in § 4 in establishing the major
theorems of this paper.

THEOREM 3.1. The absolute value of the winding number of a
cyclic r-pattern is invariant under the operations of similarity and
equivalence.

Proof. Let / - ((0, /(0)), (1, /(I)), • , (n, f(n))) be a cyclic r-
pattern with range (0,1, * ,ra) and winding number w. We first
prove that if g is a cyclic r-pattern similar to /, then g has winding
number ±w. Two cases will be considered.

Case 1. There is an integer ft such that, for each integer i in
the domain of / f(i) = (ft + g(i)) mod (m + 1). In this case we may
assume that ft is a positive integer less than m + 1. Then the positive
transitions of g are in one-to-one correspondence with the occurences
of the ordered pair (ft — 1, ft) in the characteristic sequence C(f) of /.
The negative transitions of g are in one-to-one correspondence with
the occurences of (ft, ft — 1) in C(f). We now proceed to obtain a
relationship involving the number u of occurences of (ft — 1, ft) in
C(/), the number v of occurence of (ft, ft — 1) in C(f) and the winding
number w of /.

To do this, let iu i2, , it be the maximal increasing sequence
of integers of the domain of / such that, for each number ίd of this
sequence, (f(ij)9f((ij + l)moά(n + 1))) is either a positive transition
of / or a negative transition of /. Next observe that u is equal to
the number of occurences of (ft — 1, ft) in the collection

ii), f(ii + 1), (/(ΐi + 1), f(iι + 2)), '- Λf(n- 1), f(n)),
, /(I)), , {f{iλ - 1), /&))) .

Thus u is equal to the sum of the integers ul9u2, * ,ut which are,
respectively, the number of occurences of (ft —l,ft) in the collections:

+ 1), f(i, + 2)), (f{ix + 2), f(ix + 3)), , (f(i2 - 1), f(i2))) ,

C2 = ((f(i2 + 1), f(i2 + 2)), (f(i2 + 2), f(i2 + 3)), , (/(i8 - 1), /(i3))) ,

C, = ((/(ϊ, + 1), /(i, + 2)), (f(it + 2), /(i, + 3)), - . . , ( / ( % - 1), /(n)),

(/("), /(0)), (/(0), /(I)), . . . , (f(iΎ - 1), /(i,))) .

In a similar manner, v can be expressed as the sum of the
numbers vl9v2, ,vt of occurences of (ft, ft - 1) in the collections
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CΊ, C2, , Ct, respectively. Now, for each integer j , 1 ^ j <; t, the two
elements of a given ordered pair of the collection C3- differ by at most
1, the second member of each ordered pair of C5 is equal to the first
member of the succeeding ordered pair of Cό, if any. Furthermore, if
(Λh)yf(ij + 1)) an<ϊ (/(ίj +i)f/(Vu + 1)) a r e both positive transitions of
/, then f(id + 1) = 0 and f(ίj+1) = m so that uά — vά = 1. Similarly, if
((f(h)i f(ij + 1)) and (f(ij+1), f(ίj+i + 1)) are both negative transitions
of /, then Uj — v3- = — 1. In both of the remaining situations we
obtain the result u3- — vά = 0. Thus, we conclude that the winding
number w of / is equal to the winding number u — v of g and the
proof for this case is complete.

Case 2. There is an integer k such that, for each integer i in
the domain of /, f(ί) — (k — g(ί)) mod (m + 1). In this case we may
assume that m ^ k ^ 2m + 1. Furthermore, if k = m or k — 2m + 1,
then the occurences of the positive transitions and negative transitions
of / are in a one-to-one correspondence with the negative transitions
and positive transitions, respectively, of g. In this situation, the
winding number of g is opposite in sign but equal in absolute value
to the winding number of /. If m < k < 2m + 1, the positive tran-
sitions of g are in one-to-one correspondence with the occurences of
(k + 1, k) in C(/), and the negative transitions of g are in one-to-one
correspondence with the occurences of (fe, k + 1) in C(f). These situ-
ations, in reverse order, were considered in Case 1 and we conclude,
in this case, that the winding number of g is equal in absolute value,
although opposite in sign, to the winding number of /.

Finally, we consider the relationships of the winding numbers of
equivalent cyclic r-patterns / and g. In the case that / and g satisfy
condition (a) of Definition 5, the sequence of integers #(0), #(1), , g(ri)
is a cyclic permutation of the sequence of integers /(0),/(l), ,/(tι).
If / and g satisfy condition (b) of Definition 5, the sequence #(0), c/(l), ,
g(n) is a cyclic permutation of the sequence f(n), f(n — 1), , /(0). If
follows, in both cases, that the absolute value of the winding number
of / is equal to the absolute value of the winding number of g.

Therefore, the absolute value of the winding number of a cyclic
r-pattern is invariant under the operations of similarity and equivalence.

COROLLARY. If f is a cyclic r-pattern with range (0,1, •••, m)
and k is an integer, 0 ^ k ^ m, then the integer obtained by sub-
tracting the number of occurences of ((k + 1) mod (m + 1), k) in C(f)
from the number of occurences of (k, (k + 1) mod (m + 1)) in C(f) is
equal to the winding number of /.

THEOREM 3.2. // / and g are cyclic r-patterns such that fg is a
defined composite function, then fg is a cyclic r-pattern. Furthermore,
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the winding number of fg is equal to the product of the winding
numbers of f and g.

Proof. Let / - ((0, /(0)), (1, /(I)), . . . , (n, f(n))) be a cyclic r-
pattern with range (0,1, , m) and let

be a cyclic r-pattern with range (0,1, •••,%). Then, since / is a
cyclic r-pattern, | fg(i) — fg(j) | mod m ^ 1 whenever

^ 1, 0 ^ flf(i

Furthermore, since g is a cyclic r-pattern, \i — j \ modt ^ 1 implies that

I g(i) - g(j) I mod w <; 1, 0 g i, j <; ί .

Thus i fg(i) — fg(j) j mod m ^ 1 whenever

| i - i | m o d ί ^ 1, 0 ^ i, i ^ ί ,

so that fg is a cyclic r-pattern.
Now, let h and & be the winding numbers of / and g, respectively,

and let i be an integer such that an occurence of

is either a positive or negative transition of fg. Then g(i) and
g((i + 1) mod (t + 1)) are distinct integers such that

I g(i) - g((i + 1) mod (t + 1)) | mod n ^ 1 .

In general, if an occurence of an ordered pair of integers (α, b) in
C(fg) is a transition of fg, there is an integer u in the domain of
/, and hence in the range of g, such that either f(u) = a and
f((u + 1) mod (n + 1)) = 6 or f(u) = b and f((u + 1) mod (n + 1)) = a.
From the Corollary to Theorem 3.1, the number of occurences of
(u, (u + 1) mod (n + 1)) in C(g) minus the number of occurences of
((u + 1) mod (n + 1), u) in C(g) is equal to the winding number k of
q. In addition, the number of occurences of (α, b) in C(f) minus the
number of occurences of (6, a) in C(f) is equal to either h or — h
according as an occurence of (α, b) in C(f) is a positive or negative
transition of /. Therefore, the winding number of fg is equal to the
product hk.

We note that the class of monocyclic r-patterns is closed under
the operation of function composition. The theorem which follows is
the principal theorem involving the combinatorial and refinemental
relationships among planar circular p-chains. In particular, it is an
important preliminary theorem to the major theorems of this paper.
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THEOREM 3.3. Iff and g are monocyclic r-patterns having
identical ranges, then there exist monocyclic r-patterns r and s such
that fr and gs are defined composite functions and fr — gs.

The proof of this theorem is somewhat involved and it will be
convenient to first establish the following two lemmas.

LEMMA 3.3.1. Let

a n d

flf = ( ( 0 , flf(O)), ( 1 , flr(l)), • • • , ( & , βr(fc)))

be monocyclic r-patterns having identical ranges, let fλ and gx be
linear representations of f and g, respectively, and let rλ and sx be
r-patterns having the same set (0,1, , n) as domain and satisfying
the following conditions.

( 1 ) fi^i and #iSi are defined composite functions and fλrλ — gλsλ

( 2 ) I n(0) - rx(n) \ = h + 1.
( 3 ) I S l (0) - 8l(n) I = fc + 1.

Then there are monocyclic r-patterns r and s such that fr and gs
are defined and fr — gs.

Proof. We shall define r and s in a parallel manner. First, r is
defined to have the same domain (0,1, ••-,%) as rλ and, for each
integer i in the domain of r, r(i) is defined to be the least nonnegative
integer such that | r(i) — rx{i) | mod (h + 1) = 0. The function s is
then defined by replacing the symbols r, rτ and h in the preceding
definition by s, sλ and k, respectively.

Now, the range of rλ is identical with the domain of fλ and fx is
a linear representation of /, so that the range of rλ includes integers
of the form α, a + 1, , a + h. Thus, it follows that the range of
r is identical with the domain of /. Similarly, the domain of g is
identical with the range of s. Hence fr and gs are defined composite
functions.

To see that r is a monocyclic r-pattern, we note first, since rλ is
an r-pattern, that if i and j are integers such that 0 ^ if j ^ n, and

ί — j \ <*1, then I rx{i) — rλ(j) \ <̂  1. Hence | r(i) — r(j) \ mod h <; 1.
If I % — j \ = n it follows from condition (2) of the hypothesis that
I n(Ό — n( i) I mod (h +1) = 0 so that in this case also | r(i) — r(j) \ mod h<^l.
To complete the proof that r is a monocyclic r-pattern we need to
show that the absolute value of the winding number of r is equal to
1. We do this by observing that rλ is a linear representation of r and
that ! 7̂ (0) — rλ(n) \ = h + 1. Thus the absolute value of the winding
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number of r is equal to 1. Therefore r is a monocyclic r-pattern.
A similar argument shows that s is a monocyclic r-pattern.

Finally, let i be an integer in the common domain of r and s.
We shall show that fr(i) — gs(i). From the definition of r, r(i) is
the least nonnegative integer such that | r(i) — rλ(i) | mod (h + 1) = 0.
Thus, if (0,1, « ,m) is the common range of / and g, it follows
from the definition of "linear representation" that

I Mi) - Anii) I mod (m + 1) = 0 .

Furthermore, in a similar manner | gs(i) — g^i) | mod (m + 1) = 0 .
In addition, from condition (1) of the hypothesis of the lemma,
/ ^ ( i ) = ^iSi(i) and 0 <̂  fr(i), gs(i) fg m. Therefore we conclude that
fr(i) = gs(i) and the proof is complete.

LEMMA 3.3.2. Let f and g be monocyclic r-patterns having
identical ranges, let fx and gx be monocyclic r-patterns equivalent to
f and g, respectively, and suppose rλ and sλ are monocyclic r-patterns
such that f1r1 and g±sx are defined composite functions and fλrx = g^.
Then, there exist monocyclic r-patterns r and s such that fr and gs
are defined composite functions and fr — gs.

Proof. Let / - ((0, /(0)), (1, /(I)), , (h, f{h))), let g = ((0, g(0)),
(1, g(l)), •••,(&, g(k))) and let (0,1, , m) be the common range of
/ and g. Then, since fλ is equivalent to /, there exists an integer u
such that one of the following two conditions is satisfied:

( 1 ) fx(i) = f((u + i) mod (h + 1)), O^i^h,

( 2 ) fλ{i) = f((u - i) mod (h + 1)), 0 ^ i ^ h.

Similarly, since gλ is equivalent to g, there exists an integer v sucn
that one of the following two conditions is satisfied.

( 3 ) gx(i) - g((v + i) mod (h + 1)), 0 ^ i £ k,
( 4 ) gx(i) = g((v - i) mod (h + 1)), 0 ^ i ^ k.

We shall assume that fλ satisfies condition (1) and that gx satisfies
condition (3) since it will be seen that a similar proof may be followed
in the remaining three cases. In this case we may also assume that
u is an integer such that 0 <Lu ^ h and v is an integer such that
0 ^ v ^ k.

Now, let n - ((0, n(0)), (1, n(l)), . . . , (n, nW)) and let

We define r and s by the following two relationships:
( 5 ) r(i) = (u + rλ{i)) mod (h + 1), 0 ^ i ^ n, and
( 6 ) s(i) = (v + s^i)) mod (k + 1), 0 ^ i ^ n.

Then the domain of / and the range of r are identical, and the
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domain of g and the range of s are identical. Thus fr and gs are
defined composite functions. Furthermore, by Theorem 3.1, since r
and rλ are similar and s and s1 are similar, it follows that r and s
are monocyclic r-patterns. Finally, if i is an integer of the set
<0,1, , n), then from (1) and (5),

Mi) = f{{u + rx(i)) mod (h + 1)) - fr^ί) .

Similarly, from (3) and (6),

gs(i) = f((v + s^i)) mod (k + 1)) = ^ ( i ) .

Therefore, since frx — gλsly we conclude that r and s are monocyclic
r-patterns such that fr = gs.

Proof of Theorem 3.3. First note that for each monocyclic
r-pattern there is an equivalent monocyclic r-pattern having positive
winding number. Thus, by Lemma 3.3.2, we may assume without loss
in generality that each of the cyclic r-patterns / and g have winding
number equal to 1. Now, let / - ((0, /(0)), (1, /(I)), - . . , (h, f(h))), let
g = ((0, <7(0)), (1, 0(1)), .--,(&, g(k))) and let (0,1, -, m) be the common
range of / and g. We shall establish the existence of the monocyclic
r-patterns r and s by constructing two finite sequences of r-patterns
related to / and g, respectively, and showing that the last members
of these sequences determine monocyclic r-patterns of the desired type.

We define r-patterns f and gγ in the following manner. Let f
be the r-pattern having domain (0, 1, , h + 1) such that f(Q) = /(0)
.and, if f(i) has been chosen, 0 <̂  i <̂  h, then f(i + 1) is defined to be:

f(i) + 1 if f((i + 1) mod (h + 1)) - (f(i) + 1) mod (m + 1) ,

f(i) - 1 if f((i + 1) mod (h + 1)) - (f(i) + 1) mod (m + 1) ,

or

f(i) if f((i + 1) mod (h + 1)) = f(i) .

The pattern g1 is defined by replacing the symbols f,fτ and h, in the
preceding definition by g, g1 and k, respectively. Then fx and g1 are
r-patterns which are linear representations of / and g, respectively,
and f(h + 1) - f(Q) = gλ(k + 1) - ^(0) = m + 1.

Next we define r-patterns f2 and g2. Since we shall require, again,
that the definitions have parallel form, it will be sufficient to define /2.
To do this, let u be an integer such that fx(u) is a minimal element
of the range of flm We define f2 to be the r-pattern having the same
domain as f such that /2(0) = f(u) and, if f2(i) has been chosen,
0 ^ i <; h, then we define f2(i + 1) to be equal to f(i + u + 1)
for 0 ^ i ^ h — u and to be equal to f(i + u — h) + (m + 1) for
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h — u < i gs h. It follows that f2 and g2 are r-patterns which are
linear representations of monocyclic r-patterns equivalent to fλ and
gl9 respectively.

We now define r-patterns /3 and g3 which are modifications of f2

and g2, respectively, such that /3(0) = #3(0). Specifically, observe that
one of the r-patterns f2 and g2 has a member of its range which
is equal to the least member of the range of the other r-pattern.
Without loss in generality we may assume that /2(0) is equal to some
element of the range of g2. Let c be the greatest integer such that
/2(0) = g2(c), and let g3 be defined by the relationships

9z(i) = #2(c + i) for 0 <Z i <L k - c ,

and

03(i) = g2(c + i — k — 1) + (m + 1) for k — c < i ^ k + 1 .

We then define f3 to be identical with /2. Now, since g2 is an r-
pattern such that g2(k + 1) -- g2(0) = m + 1, #2(0) is a minimal element
of the range of g2 and c is the greatest integer such that /2(0) = g2(c),
it follows that (/3(0) is a minimal element of the range of g3. Further-
more, since the definition of g3 in terms of g2 is analogous to the
definition of g2 in terms of gl9 g3 is a linear representation of some
monocyclic r-pattern equivalent to g. Thus, the r-patterns /3 and g3

have the following properties: (I) /3(0) = #3(0), (2) /3(0) and #3(0) are
minimal elements of the ranges of / 3 and g9, respectively, (3) /3 is a
linear representation of a monocyclic r-pattern equivalent to /, (4) g3

is a linear representation of a monocyclic ?*-pattern equivalent to g
and (5) fs(h + 1) = gs(k + 1).

Finally, we define r-patterns /4 and gim To do this, note from
properties (1), (2), (3) and (4) that either the range of /3 is a subset
of the range of g3, or the range of g3 is a subset of the range of /3.
Without loss in generality we may suppose that the range of fs is a
subset of the range of g3. Now, let v be an integer such that gz{v) is
a maximal element of the range of g3. Then, from property (3) and
the fact that fB(h + 1) — /3(0) = m + 1, the following expression defines
a linear representation of a monocyclic r-pattern equivalent to /:

((0, /3(0)), (1, /3(1)), . . . , (h, Mh)), (h + 1, /8(0) + (m + 1)),

(h + 2, /8(1) + (m + 1)), . , (2h + 1, Mh) + (m + 1)),

(2h + 2, /8(0) + 2(m + 1), (2Λ + 3, /3(1) + 2(m + 1)), ,

(Wi, /8(6Wl) + dWi(m + 1))) ,

where 0 ^bWl^ h, 0 ^ dWi and UΊ is the least integer such that
fs(K) + ^ W l (

m + 1) = Srs(/y). We define /4 to be the r-pattern determined
by the foregoing conditions. The r-pattern gt is defined in a similar
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although not precisely parallel manner. Specifically, we define g4 to
be the linear representation of a monocyclic r-pattern equivalent to g
determined by the following expression:

((0, 08(O)), (1, flr8(l)), ••-,(&, &(&)), (& + 1, 08(O) + (m + 1)),

(k + 2, flf8(l) + (m + 1)), , (w2, 08(6Wa) + (m + 1))) ,

where 0 ^ δW2 <Ξ fc, and w2 is the least integer greater than or equal

to k + 1 such that #3(&W2) + (m + 1) = g3(v).
It will now be shown that the r-patterns /4 and g4 determine

monocyclic r-patterns r and s of the desired type. We shall use
Lemmas 3.3.1 and 3.3.2 and certain properties of p-chains. Let Q =
Q(0, /4(^i)) be a p-chain, let P = P(0, wj be a p-chain which is a
normal refinement of Q having r-pattern /4 in Q and let T = T(0, w2)
be a p-chain which is a principal normal refinement of Q having
r-pattern g4 in Q. Then, by Theorem 3.2 of [6], there is a p-chain
Si = SΊ(O, zj such that S1 is a normal refinement of P and a principal
normal refinement of T. By property (2) of /3 and the definition of
/4, the sub-p-chain P(wly h + 1) of P(w1? 0) is a normal refinement of
#(Λ(Wi), /4(0) + (m + 1)). Similarly, the sub-p-chain T(w2, k + 1) of
T(w2, 0) is a principal normal refinement of Q(/4(Wi), /4(0) + (m + 1)).
Hence there is a sub-p-chain S2 = Si(«i, «2) of S^i, 0) such that S2 is
a normal refinement of P(wl9h + 1) and a principal normal refinement
of T(w2, k + 1). It follows that the p-chain sum S = S(0, z) = S, + S2

is a refinement of P and a principal normal refinement of T such that
the last link of S corresponds to the (h + l)-st link of P under the
r-pattern of S in P, and the last like of S corresponds to the
(k + l)-st link of T under the r-pattern of S in T.

Now, by Lemma 3.3.2, we may assume without loss in generality
that f4 and g4 are linear representations of / and g, respectively.
Next, we note that the condition that a refinement be a principal
refinement in the proof of Theorem 3.2 of [6] and in the preceding
paragraph is not essential and that equivalent results may be obtained
by considering the corresponding r-patterns. In particular it may be
concluded that if P and T are normal refinements of Q such that
each link of a refining p-chain is contained in exactly one link of the
refined p-chain, then there is a p-chain S which is a normal refinement
of both P and T and is such that each link of the refining p-chain
is contained in exactly one link of a refined p-chain. Thus, in this
theorem, if rλ is the r-pattern of S in P and sλ is the r-pattern of
S in T, it may be assumed that /4, g49 τx and sτ have been chosen so
that /4rx = gβlm Finally, rx(z) — r^O) = m + 1 and sλ(z) — Si(0) = m + 1.
Therefore, by Lemma 3.3.1, there exist monocyclic r-patterns r and s
such that fr = gs.
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REMARK. The foregoing theorem cannot be modified to state that
if / and g are arbitrary cyclic r-patterns having identical ranges then
there are cyclic r-patterns r and s such that fr = gs. The following
example shows that in the case of cyclic r-patterns / and g having
winding numbers each equal to zero, such a theorem would be false.

Let

/ - ((0, 0), (1, 1), (2, 2), (3, 1), (4, o)) ,

and

g = ((0, 1), (1, 2), (2, 0), (3, 2), (4, 1)) .

If s is a cyclic r-pattern ((0, s(0)), (1, s(l)), , (n, s(n))) whose range
is identical with the domain of g, there are integers h and k in the
domain of s such that \h — k\ mod (n — 1) = 1, s(h) = 2 and s(k) = 1
or 3. Thus gs(h) = 0 and gs(k) = 2. Now, suppose that there exists a
cyclic r-pattern r = ((0, r(0)), (1, r(l)), , (n, τ(n))) such that fr = gs.
Then I r(h) — r(k) | mod 4 ^ 1 , fr(h) = 0 and fr(k) = 2, which is contrary
to the definition of /.

We now consider the final theorem of this section.

THEOREM 3.4. Let f he a monocyclic r-pattern and let g be a
crooked monocyclic r-pattern such that fg is a defined composite
function. Then fg is a crooked monocyclic r-pattern.

Proof. First we show that if fλ is an r-pattern and gx is a
crooked r-pattern such that fxgx is a defined composite function then
fxgx is a crooked r-pattern. Since gλ is an r-pattern \gλ(i) — gi(j)\ ^ 1
whenever i and j are integers of the domain of gx such that \i — j \ ^ 1.
Furthermore, \gλ(i) - g1(j)\ ^ 1 implies that Ifg^i) - fgi(j)\ ^ 1, since
/i is an r-pattern. Thus Ifg^i) — fgAJ) \ ̂  1 whenever i and j are
integers of the domain of fgt such that | i ~ j \ <̂  1. Hence fgx is
an r-pattern. To show that fgλ i # a crooked r-pattern, let i and j be
integers of the domain of fgλ such that i < j and | fg^i) — fg^j) I > 2.
Then I gλ(i) — gx(j) \ > 2. Therefore, since gx is a crooked r-pattern,
there are integers u and v such that i < u < v < j , \ gλ(u) ~ gx{j) \ ̂  1
and I gλ(v) - g^i) | ^ 1. It follows that | fg^u) - fg^j) \ ̂  1 and
I fiQiiv) — /i0i(Ό I ̂  1̂  i < ^ < v < j , so that f1g1 is a crooked r-pattern.

Now, let / = ((0,/(0)), (1,/(1)), -°-Λn,f(n))) be a monocyclic r-
pattern with range (0,1, , m), let g = ((0, 0(0)), (1, (/(I)), , (ί, g(t)))
be a crooked monocyclic r-pattern with range (0,1, •• ,/^) and note,
by Theorem 3.2, that fg is a monocyclic r-pattern. We choose p to
be a monocyclic r-pattern such that p is an adjustment of fg and p-
has canonical form. Then, since an adjustment is the composition of
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a similarity operation and an equivalence operation, there exist inte-
gers h and k such that

(1) p(i) = (h + fg((k + i) mod (t + 1))) mod (ra + 1), 0 ^ i ^ t
or p(i) is defined by an equation similar to (1) in which one or both
of the first two plus signs are replaced by minus signs. Since a
similar argument may be followed in each of these four cases, we
shall assume that 0^h^my0^k^t and that p(i) is determined
by equation (1).

We now show that the cyclic r-pattern p can be expressed as
a composite function f'g', where / ' is an adjustment of / having
canonical form and g' is an adjustment of g having canonical form.
To do this, let w be the integer such that

0 ^ w <. n and (w + g(k)) mod (n + 1) = 0 .

Then, the cyclic r-patterns / ' and gf are defined in the following
manner:

( 2 ) f'(i) = (h + f((n + 1-W + Ϊ) mod (n + 1))) mod (m + 1),
0 ^ i ^ n ,

( 3 ) g'(i) = (w + g((k + i) mod (t + 1))) mod (n + 1), 0 ^ ί ^ t .
Thus from (1), (2) and (3) it follows that

( 4 ) p ( i ) = f ' ( g ' ( i ) ) , O^i^t.
Furthermore, by the choice of w, g'(0) = 0. In addition, from (4) and
the fact that p and gf are cyclic r-patterns having canonical form, it
follows that /'(O) — 0 so that / ' also has canonical form.

To complete the proof of this theorem, noting the result obtained
in the first paragraph of the proof, it is sufficient to show that each
primary r-pattern of p is equivalent to the composite function of an
arbitrary r-pattern and a crooked r-pattern. Let

r = ((%, p(u)), (u + 1, p(u + 1), , (v, p(v)))

be a primary r-pattern of p. Then, neither the domain nor the range
of r contains the element zero. Hence, from (4) and the fact that
/ ' and gr are cyclic r-patterns having canonical form, the sequence
g'(u), g'(u + 1), , g'(v) consists of integers each of which is nonzero.
Thus, noting Definition 2, it follows that the sequence of ordered
pairs of integers

( 5 ) r 2 = ((iι, g'(u)), (u + 1, g'(u + 1)), . . . , ( * , g'(v)))

is a primary r-pattern of g'. In a similar manner, if a and b are the
minimum and maximum integers of the range of r2, then

( 6 ) rx = ((α, f'(a)), (a + 1, f(a + 1), , (6, /'(&)))
is a primary r-pattern of / ' . Now, gr is a crooked cyclic r-pattern,
so that r2 is a crooked r-pattern. Furthermore, r = rιr2. Therefore,
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r is a crokeed r-pattern and we conclude that fg is a crooked mono-
cyclic r-pattern.

4* Characterization of the continuous images of all pseudo-
circles* The purpose of this section is to establish the two principal
theorems of this paper, that the class of continuous images of all
pseudo-circles consists of exactly those continua which are circularly
p-chainable, and that every planar circularly chainable continuum is
a continuous image of a pseudo-circle.

In the presentation of the theorems of this section it will be
convenient to omit the qualifying term "circular" in the expression
"circular refinement" where no confusion is likely to result.

THEOREM 4.1. If a continuum C is a continuous image of a
pseudo-circle then there exists a sequence of circular p-chains cycli-
cally associated with C such that each refinement is determined by
a monocyclic r-pattern having canonical form.

Proof. Let I be a pseudo-circle and let / be a continuous
transformation with domain M so that the continuous image of M
under / is the continuum C. Then, from the definition of "pseudo-
circle" given in [2, p. 48], there is a sequence of planar circular chains
A, A, A, such that for each positive integer i: (1) each link of
A is an open circular disk having diameter less than 1/ί, (2) the
closure of each link of A+i is a subset of some link of A> (3) each
complementary domain of the union of the links A+i contains a com-
plementary domain of the union of the links of A, (4) if Ei is a proper
sub-chain of A and Ei+1 is a sub-chain of Di+1 contained in Eit then
Ei+1 is crooked in Ei9 and (5) the intersection of the sets of points of
the circular chains Du D2, D3, is M.

From condition (1) the union of the links of each circular chain
A is topologically equivalent to the interior of an annular ring.
Hence, from conditions (3) and (5), M is a continuum which separates
the plane into exactly two complementary domains having M as their
common boundary. It follows that the circularly chainable continuum
M is not a snake-like continuum. Now, noting condition (2), if i is a
positive integer, there is a cyclic r-pattern g{ of A+i ίn A such that
the closure of each link of A+i is a subset of the link of A to
which it corresponds under gi% Furthermore, it is easily seen that gi

can be chosen so that g^O) = 0. Therefore, since A and A+i are
planar circular chains whose links are open disks and each comple-
mentary domain of A is a subset of a complementary domain of
A+i, it follows from the proof of Theorem 3 of [4] that the winding
number of g{ has unit absolute value.
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We denote the sequence of links of A by (diQ, dil9 , din.) and
indicate the circular p-chain ( / ( 4 n M ) , / ( 4 f l I ) , •• , / ( 4 i f l I ) ) by
Pi9 for i = 1, 2, 3, . Now, M is a compact continuum, so that the
function / is uniformly continuous. Thus, a subsequence Pfci, P/C2, P^3,
of the sequence Pu P2, P3, may be chosen so that for each positive
integer i, the diamenter of each link of Pk. is less than 1/ΐ. In addition,
noting Theorem 3.2, the composite function gkigki+1 9ki+JΓi is a mono-
cyclic r-pattern of Pki+1 in P^ having canonical form, i — 1, 2, 3, .
In addition, the closure of each link of P/c.+i is a subset of the link
of Pk. to which it corresponds under the cyclic r-pattern of Pki+1 in
Pk., i = 1, 2, 3, . Finally, from condition (5), above, if i is a positive
integer then the union of the links of Pk. is equal to the continuum
C. Therefore, the sequence of circular p-chains satisfies each of the
requirements of Definition 12 with respect to C and each refinement
is determined by a cyclic r-pattern having canonical form.

The theorem which follows constitutes the characterization of the
continuous images of all pseudo-circles mentioned in the first paragraph
of this section and discussed in the Introduction of this paper. In the
proof of this theorem, strong use will be made of the combinatorial
properties of cyclic r-patterns established in the preceding section.

THEOREM 4.2. In order that a continuum C be a continuous
image of a pseudo-circle it is necessary and sufficient that C be
circularly p-chainable.

Proof of necessity. This follows form Theorem 4.1.

Proof of sufficiency. First we show that if Pu P2, P3, is a
sequence of circular p-chains which is cyclically associated with the
continuum C, then there is a corresponding sequence of circular p-
chains Tu T2, T3, which satisfies the requirements of Definition 12
with respect to C and is also such that for each positive integer i:

(1) Tί is a principal refinement of P{ having a monocyclic
r-pattern in Pim

(2) If i > 1, then T< is a crooked refinement of T ^ having a
crooked monocyclic r-pattern in T^λ.
To do this, let Tx be an arbitrary principal refinement of Px having
a monocyclic r-pattern in P1# Next, assume that for some positive
integer n, T{ has been defined for each positive integer i less than or
equal to n, and that T{ satisfies the requirements of Definition 12 and
conditions (1) and (2), above. Now consider the case that i = n + 1.

Since the sequence Pu P2, P3, is cyclically associated with C
there is a monocyclic r-pattern fn of Pn+1 in Pn. In addition, from
condition (1), above, for i = n, there is a monocyclic r-pattern gn of
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Tn in Pn. Thus, fn and gn are monocyclic r-patterns whose ranges
are identical. It follows, by Theorem 3.3, that there exist monocyclic
r-patterns rn+1 and sn such that the composite functions fnrnΛι and
gnsn are defined and fnτn+1 — gnsn. We define a circular p-chain Qn+1

to be the principal refinement of Pn+1 which has the monocyclic
r-pattern rn+1 in Pn+1 and show that then Qn+1 is a refinement of Tn

having the monocyclic r-pattern sn in Tn. It is also shown that the
closure of each link of Qn+1 is a subset of the link of Tn to which it
corresponds under sn. In order to establish these two assertions it is
noted that sn is a cyclic r-pattern, the domain of sn is identical with
the set of subscripts of the links of Qn+1 and the range of sn is
identical with the set of subscripts of the links of Tn. Hence, both
of these assertions will be established if it is shown that the closure
of each link of Qn+1 is a subset of the link of Tn to which it corre-
sponds under sn. Now, Qn+1 is a principal refinement of Pn+1 having
the monocyclic r-pattern rn+1 in Pn+1, so that a link of Qn+1 with
subscript i is the same set as the link of Pn+1 with subscript rn+1(ί).
In addition, from condition (d) of Definition 12 for the sequence
Pu P2, P3, , the closure of the link of Pn+1 with subscript rn+1(i) is
a subset of the link of Pn with subscript fnrn+1(ί). Thus, since Tn

is a principal refinement of Pn having the monocyclic r-pattern gn in
PΛ, the closure of the link of Qn+1 with subscript i is a subset of
any link of Tn with subscript in the set of integers gn1fnrn+i(^)
Therefore, since fnrn+1 = gnsni the closure of the link of Qn+1 with
subscript i is a subset of the link of Tn with subscript sn(i), as was
to be shown.

We now define Tn+ι to be a principal refinement of Qn+1 having
a crooked monocyclic r-pattern in Qn+1. It is easily seen that such a
circular p-chain exists. In particular we can choose TnΛ1 to be the
principal refinement of Qn+1 having the crooked monocyclic r-pattern
in Qn+1 described in the example of a pseudo-circle in | 2 , p. 48]. To
see that Tn+1 satisfies conditions (1) and (2), above, let cn+1 denote the
crooked monocyclic r-pattern of Γ w f l in Qn+1. Then, by Theorem 3.2,
rn+1cn+1 is a monocyclic r-pattern. Furthermore, Tn+1 is a principal
refinement of P Λ + 1 under the monocyclic r-pattern r w f l c n + i of Tn+1 in
Pn+1. In addition, from Theorem 3.2 and Theorem 3.4, sncw+1 is a
crooked monocyclic r-pattern of Tn+1 in Tn. Thus, the sequence of
circular ^-chains 2\, T2, Γ3, satisfies the required conditions (1) and
(2). It remains to show that the sequence Tu T2, T3, also satis fies
the requirements of Definition 12 with respect to the conitnuum C.
The requirements (a) and (c) of Definition 12 follow from property (1),
above, and requirement (b) of Definition 12 follows from property (2),
above. The final requirement (d) of Definition 12 is a consequence of
the fact that, for each positive integer i, Ti+1 is a principal refinement of
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Qi+i, together with the result established in the preceding paragraph
that the closure of each link of Qi+1 is a subset of the link of T{ to
which it corresponds under the cyclic r-pattern of Qi+1 in Γi#

In this last section of the proof we construct a pseudo-circle M
and define a continuous transformation f oί M onto C. To do this,
let ϊ\, T2, T3, be a sequence of circular p-chains cyclically associated
with C such that for each positive integer i, T ^ has a crooked
monocyclic r-pattern in Tίβ We construct a corresponding sequence
of circular chains Dlf D2, D3, in the plane in the following manner.
Let D1 be a circular chain having the same number of links as Tx and
such that the links of A are open circular disks of diameters less
than 1 whose union is contained in the plane. Next, suppose for
each positive integer i less than or equal to some positive integer n
that D{ has been chosen and consider the case that i = n + 1. Now,
from the definition of Tn+1 as a principal refinement crooked in a
circular p-chain Qw+1, it may be seen that Tn+1 can be chosen to have
any sufficiently large number of links. Thus, we may assume that
Tn+1 has a sufficient number of links that there is a circular chain
Dn+1 having the same cyclic r-pattern in Dn as the cyclic r-pattern
of Tn+1 in Tn. Since the winding number of Dnn in Dn has unit
absolute value, it follows from the proof of Theorem 4 of [4] that
such a circular chain Dn+ί can be constructed in the plane. In addition
we choose Dn+1 to be such that the links of Dn+1 are open circular
disks of diameter less than 1/n + 1 and the closure of each link of
Dn+1 is a subset of the link of Dn to which it corresponds under the
cyclic r-pattern of Dn+1 in Dn. Then, the circular chains Du D2, A ,
have the properties required in the definition of "pseudo-circle" [2, p. 48]
so that the intersection M of the sets of points of Du D2, Ds, is a
pseudo-circle.

We now define the continuous transformation f oί M onto C. To
facilitate the description of / let D{ be represented by the sequence
of links (di0, diu , diki), i = 1, 2, 3, . Let x be a point of M and
let the sequence of links d1Ul of Du d2U2 of D2, d5uz of D3, be a
sequence of open sets closing down on x such that, for each positive
integer i, di+lu.+l corresponds to diM. under the cyclic r-pattern of Di+1

in Di. We define

/(*) = ή tiu.

and note by conditions (c) and (d) of Definition 12 that f(x) exists
and is a single point. If a second sequence of links dlVχ of Dl9 d2Vz

of D2i d3Vd of Z)3, closes down on x then, for each positive integer
i, I Ui — Vi I mod k, <̂  1. Hence the links tu. and tv. of Tι intersect,
i = 1, 2, 3, . It follows from condition (c) of Definition 12 that
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Thus / is a well defined transformation. To prove that / is a continuous
transformation of M onto C, let t be an open set in C and let m be
an integer such that t contains three consecutive links

Now, if d1Ul, d2%2, rf3U3, is a sequence of links closing down on a point
of dmiJ+1)mcάkm then one of the links dmJ,dmU+1)inoakm and dmij±2)inoάkm is

a member of this sequence. Hence dm(j+1)modkm f] M is mapped into
the subset tmj U tm{j+1)moάkm U tmij+2)moΛkm of ί under the transformation
/. We conclude that / is continuous and the compact set f(M) is
everywhere dense in C. This completes the proof.

We now present the second principal theorem of this paper. In
the proof of this theorem, Theorem 4.3, it is shown that all p-chainable
continua [6] as well as all planar circularly chainable continua are
circularly p-chainable. Thus, in particular, we obtain the additional
result which is stated as Theorem 4.4. It is observed the Theorem
4.4 can alternatively be obtained from the statement of Theorem 4.3
rather than the proof of Theorem 4.3 in view of the result of Burgess
[5, Th. 7] that every indecomposable chainable continuum is circularly
chainable and the result of the author [6, Th. 4.1] that every chainable
continuum is a continuous image of the pseudo-arc.

THEOREM 4.3. Every planar circularly chainable continuum is a
continuous image of a pseudo-circle.

Proof. Let C be a planar circularly chainable continuum. Then,
from Theorem 9 of [4], C is either a snake-like continuum or C
separates the plane into exactly two complementary domains having
C as their common boundary. We consider the two cases in turn.

Case 1. C is a snake-like continuum. Then, by Theorems 3.5
and 4.1 of [6] there is a sequence of p-chains Pl9 P2, P3, such that
for each positive integer i:

( 1 ) The union of the links of P 4 is C.
( 2 ) P ί + 1 is a normal refinement of P{.
( 3 ) The diameter of each link of P 4 is less than 1/i.
( 4 ) The closure of each link of Pi+1 is a subset of the link of

Pi to which it corresponds under the r-pattern of Pi+1 in Pi%

Now let Pi be represented in the form P^O, %), ί — 1, 2, 3, and
consider the ordered p-chain sum

QΛO, m,) - P,(0, nt) + P,(^, 0) .
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Since the first and last links of ζh(O, m<) are identical, the p-chain
Qί(0, mi) is a circular p-chain. Furthermore, by property (1), above,
the union of the links of ζ)t (0, m{) is equal to C. Now, since Pi+1 is
a normal refinement of Piy it follows that the r-pattern of Pi+1(0, ni+1)
in P;(0, Ui) together with the r-pattern of Pi+1(ni+1,0) in Pi(ni9 0)
determine a monocyclic r-pattern of <3ί+1(0, mi+1) in Q^O, m j . In
addition, the closure of each link of Qί+1(0, mi+1) is a subset of the
link of Qi(0, m^ to which it corresponds under the monocyclic r-
pattern of Qi+1(0, mi+ι) in Q^O, m<). Thus, conditions (a), (b) and (d)
of Definition 12 are satisfied by the sequence of circular p-chains

QΛO, raj, Q2(0, m2), Q3(0, m3), .

with respect to the continuum C. Finally, condition (c) of Definition
12 for the sequence

QΛO, mx), Q2(0, m2), Q8(0, m3), •••

is a consequence of property (4), above, for the sequence Plt P2, P8, .
Therefore, C is circularly ^-chainable and we conclude, by Theorem
4.2, that C is a continuous image of a pseudo-circle.

Case 2. C is a planar circularly chainable continuum which sepa-
rates the plane into exactly two complementary domains. In this case
we note by Theorem 7 of [4] that it may be assumed without loss
in generality that for each positive number ε, C can be irreducibly
covered by a planar circular chain each of whose links is an open
circular disk of diameter less than ε. Hence, there is a sequence of
chains Dl9 D21 Dά, in the plane such that for each positive integer i:

( a ) The union of the links (di0, diu , dίk.) of D{ contains C.
( b ) There is a cyclic r-pattern f{ of Di+1 in Dim

( c ) Each link of D{ is an open circular disk of diameter less
than 1/ί.

( d ) The closure of each link of D{ f x is a subset of the link of
Di to which it corresponds under fi%

Then, since each link of each circular chain of the sequence Dl9 D2,
D3, is a connected open set, it follows from the proof of Theorem
3 of [4] that for each positive integer i, the absolute value of the
winding number of f{ is equal to at most 1. We show that for all
but a finite number of values ofΐ , i = l , 2 , 3 , •••, the absolute value
of the winding number of fi is equal to 1. For suppose that there
is an increasing sequence of positive integers hlf h2, h^ such that
for each positive integer i, fh. has winding number zero. Then, by
Theorem 3.1, Dhv Dh2, Dhs, is a subsequence of Dl9 D2, A> " with
the property that Dhi+1 has a cyclic r-pattern with winding number
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zero in Dh. for i = 1, 2, 3, . It follows that the sequence of open
sets obtained by successively intersecting the links of Dh.{i with the
set which is the union of the links of Dh., i = 1, 2, 3, , is a linear
chain. Thus we obtain the conclusion that C is a snake-like continuum,
which contradicts the fact that C separates the plane. In view of the
foregoing contradiction we conclude that there is a positive integer n
such that for each positive integer j , fn+j is a monocyclic r-pattern.
Now let Dn+j Π C denote the circular p-chain

(dn+jQ n c, dn+jl n , c .. -, dn+jkn+. n C), j - 1,2,3,... .

Then the sequence of circular p-chains Dn+1 Π C, Dw+2 Π C, Dw+3 Γ) C,
satisfies each of the conditions of Definition 12 with respect to the
continuum C. Therefore, by Theorem 4.2, C is a continuous image
of a pseudo-circle.

THEOREM 4.4. Every snake-like continuum is a continuous image
of a pseudo-circle.

Proof. This is a consequence of the argument given in Case 1
of the proof of Theorem 4.3.

The referee has noted that Theorem 3.3 together with the remark
following this theorem suggest the question of whether or not there
exists a result similar to Theorem 3.3 in the case that the winding
numbers of the cyclic r-patterns are arbitrary positive integers. He
has also suggested that it be mentioned that it is not known whether
or not every pseudo-circle is a continuous image of the pseudo-arc,
and it is not known whether or not every solenoid is a continuous
image of a pseudo-circle. Solutions to each of these problems will be
included in a subsequent paper to be presented by this author.

Added in proof. Professor F. Burton Jones has mentioned to
this author that James T. Rogers Jr, one of his Ph. D. students, has
recently obtained some of the results of this paper by independent
investigation.
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