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Capacities of ideal boundary components of Riemannian
spaces are introduced to measure their magnitude with respect
to harmonic functions on the spaces. The main purpose of
this paper is to find zero capacity criteria.

The modular criterion, well-known for Riemann surfaces,
i.e. for 2-dimensional Riemannian spaces, is shown to be valid
for general Riemannian spaces. The so-called metric cri-
terion, however, brings forth entirely new aspects for higher
dimensions.

CAPACITY OF A SUBBOUNDARY

1* Subboundaries* Throughout this paper we denote by R a non-
compact orientable connected C°° Riemannian space. A relatively
compact region whose relative boundary is smooth will be called a
regular region. A sequence {Rn}? of regular regions Rn(zR such
that RnaRn+1 and R = \J?Rn is called an exhaustion of R.

The ideal boundary component of Kerekjartό and Stoϊlow may be
related to {Rn}; here R — Rn can be assumed to consist of a finite
number of relatively noncompact regions Fni with corders βni. Choose
a sequence Fx = FUι, F2 = F2h, . . such that Fn+1 c Fn. Then {Fn}T

defines a boundary component 7. We denote by 7n the relative boundary
3Fn of Fn.

A subboundary, also to be denoted by 7, is a union of boundary
components.

2Φ Capacity function* Let B be a parametric ball about aeR

with compact B. Suppose 7 is a subboundary of R, and τ» the union

of all dFn such that {Fn}~ defines a boundary component belonging

to 7.

Consider the family P = {p} of harmonic functions p on R — a

such that (a) p — — ga + h in B where ga is the Green's function of

B with pole at α, and h a harmonic function on B with h(a) = 0,

(b) I *dp = 1 and I * dp = 0 for large n, where the βni are

components of dRn.

We use the conventional notations

I * dp — lim \ * dp .
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S r
p * dp = lim \ p*dp ,

β being the entire boundary of R.
Amalgamating the method of Sario [1] with the existence theorem

of principal functions in Sario-Schiffer-Glasner [2], we can easily see
that P is not empty and that there exists a function pre P such that

S r
p * pd — \ pr * dpr .

β Jβ

Here — co < kr <g c>o , and if kr < ^ , then pr is unique. This follows
from the identity

S r
p*dp = D(p - pr) + pr*dpr ,

β j β

where D indicates the Dirichlet integral.
The function pr shall be referred to as a capacity function for 7.

The quantity cr = erh* for dimi2 = 2, and ky{m~2) for dimR = m ^ 3
will be called the capacity of 7.

MODULAR CRITERION

3* Moduli* Let Ω be a union of disjoint regular regions ί^ ,
i = 1, , fc. Suppose that δβ^ consists of two nonempty disjoint sets
β) and /?7 which are unions of components of dΩj. Set βr = \Jlβ]
and β" — Uί/^7 Let u0 be the continuous function on Ω which is

harmonic on Ω with uQ \ βf = 0, u0 \ β" = log μ, and I *duQ = 1. The
J β'

constant μ > 1 is called the modulus of the configuration (£?, /3', /3"),

μ = mod (fl, /S', β") .

The function ^ 0 is referred to as the modulus function.
Consider the family U = U(Ω, βf', /3") of C'-functions ^ o n f l which

are harmonic on 42 with \ *du = 1. Then we have
J/3'

( 3 ) min DΩ(u) = DΩ(u0) .

This follows from the identity

( 4 ) DΩ{u) = DΩ(u0 -u) + DΩ(uQ)

for every ue U.

4. Modular criterion* Let Fn be the sum of those Fn for which

n}Γ defines a boundary component in the subboundary 7. Consider
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En = (Rn+1 - Rn)ΠFn and set yn = dFn, Yn = 3En - 7,. In terms of

( 5 ) μnr = mod {En, 7,, Y,)

we state:

THEOREM 1. If there exists an exhaustion of R with

( 6 ) ΪLμ.τ= °° ,

then the capacity of 7 vanishes.

In fact, let pn and &„ stand for pr and /cr with respect to yn and
J?w. By (1) we infer that

and by (3) that

log μnr ^ DEn(pn+1) .

Therefore log μnr ^ kn+1 — kn, and we conclude that (6) implies

lim kn = 00 .

On the other hand it is not difficult to see that kr = \imnkn,
whence cr = 0.

METRIC CRITERION

5* Conformally equivalent metric* Let λ be a positive C°°-
function on i2. The new metric

( 7 ) da — Xds

is conformally equivalent to the original metric ds on R. We fix a
point aeR and assume that

{8) R(r) = {x e R | σ(aj, α) < r}

is relatively compact in R for 0 < r < c o , with R = \J0<r<coR(r).
Consider the minimal union y(r) of components of β(r) = 9i?(r) which
separates 7 from a. Let

( 9 ) S r ( * 0 = ( dS.,

Jr(r)

where dSσ is the surface element induced by dσ.

THEOREM 2. 1/ ίfcere exists an admissible λ s%c/& that
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<10) • v»

then 7 has vanishing capacity for R with dimϋ! = 2. //, moreover,
there exists a constant M such that

(11) 0 < — ^ λ ^ M ,
M

then the same conclusion holds regardless of the dimension of R.

For the proof we choose a sequence {rn}f such that ε < rn < rn+1 < co
and lim% rn = oo, with jβw = J?(rM) regular. As in § 4 we define En =
(jβ»+i — # J Π Fn and μwr. We also denote by un the corresponding
modulus function.

The proof in the case dim R = 2 will be given in § 6 and that in
the general case under the assumption (11), in §7.

6* The case dim R = 2. Observe that

S ΓrwfiΓΓ Γ 1 do?

I Fcun I2 <27. = I V.un I2 dS.\ dSa'
 ώ r

£•„ Jrre LJr(r) Jrίr)

By the Schwarz inequality we have

(13) ( \Vaun\*ds\ dSσ^(\
Jr(r) Jr(r) VJr(r)

Since *σ = * and {F.u^dV. = \Fun\*dV, it is seen that (12), (13),
and DEJun) = log μnr imply

(14) log Π

We conclude that (10) implies (6), and consequently cr = 0.

7* The case dim J? = m > 2. By (11) we see that

(15) ( I Fσun |2 d Vσ ^ Mm~2DE (un) ,
J^«

(16) * σ c ^ ^ Λί- ( m-
Jr(r) Jr(r)

Therefore (14) must be modified to give

Sr(r)
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But this sufficient to conclude that cΊ = 0.

REMARK. Condition (11) cannot be suppressed in the case of
higher dimensions.

The author is greatly indebted to Professor Leo Sario, chairman
of his doctoral committee, who guided his research, and also to
Professor Mitsuru Nakai, with whom the author had many invaluable
discussions.
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