Pacific Journal of Mathematics

CRITERIA FOR ZERO CAPACITY OF IDEAL BOUNDARY COMPONENTS OF RIEMANNIAN SPACES

WELLINGTON HAM OW

Vol. 23, No. 3

CRITERIA FOR ZERO CAPACITY OF IDEAL BOUNDARY COMPONENTS OF RIEMANNIAN SPACES

WELLINGTON H. OW

Capacities of ideal boundary components of Riemannian spaces are introduced to measure their magnitude with respect to harmonic functions on the spaces. The main purpose of this paper is to find zero capacity criteria.

The modular criterion, well-known for Riemann surfaces, i.e. for 2-dimensional Riemannian spaces, is shown to be valid for general Riemannian spaces. The so-called metric criterion, however, brings forth entirely new aspects for higher dimensions.

CAPACITY OF A SUBBOUNDARY

1. Subboundaries. Throughout this paper we denote by R a noncompact orientable connected C^{∞} Riemannian space. A relatively compact region whose relative boundary is smooth will be called a regular region. A sequence $\{R_n\}_1^{\infty}$ of regular regions $R_n \subset R$ such that $\overline{R}_n \subset R_{n+1}$ and $R = \bigcup_1^{\infty} R_n$ is called an exhaustion of R.

The ideal boundary component of Kerékjártó and Stoïlow may be related to $\{R_n\}$; here $R - \overline{R}_n$ can be assumed to consist of a finite number of relatively noncompact regions F_{ni} with corders β_{ni} . Choose a sequence $F_1 = F_{1i_1}, F_2 = F_{2i_2}, \cdots$ such that $\overline{F}_{n+1} \subset F_n$. Then $\{F_n\}_1^\infty$ defines a boundary component γ . We denote by γ_n the relative boundary ∂F_n of F_n .

A subboundary, also to be denoted by γ , is a union of boundary components.

2. Capacity function. Let B be a parametric ball about $a \in R$ with compact \overline{B} . Suppose γ is a subboundary of R, and γ_n the union of all ∂F_n such that $\{F_n\}_1^{\infty}$ defines a boundary component belonging to γ .

Consider the family $P = \{p\}$ of harmonic functions p on R - a such that (a) $p = -g_a + h$ in B where g_a is the Green's function of B with pole at a, and h a harmonic function on B with h(a) = 0, (b) $\int_{\tau_n} * dp = 1$ and $\int_{\beta_{ni} \notin \tau_n} * dp = 0$ for large n, where the β_{ni} are components of ∂R_n .

We use the conventional notations

$$\int_{\tau} *dp = \lim_{n \to \infty} \int_{\tau_n} *dp$$
 .

$$\int_{\scriptscriptstyleeta}\!p*dp\,=\,\lim_{\scriptscriptstyle n o\infty}\int_{\scriptscriptstyleeta_n}\!p*dp$$
 ,

 β being the entire boundary of R.

Amalgamating the method of Sario [1] with the existence theorem of principal functions in Sario-Schiffer-Glasner [2], we can easily see that P is not empty and that there exists a function $p_{\tau} \in P$ such that

(1)
$$k_{\gamma} = \min_{p} \int_{\beta} p * pd = \int_{\beta} p_{\gamma} * dp_{\gamma} .$$

Here $-\infty < k_{\tau} \leq \infty$, and if $k_{\tau} < \infty$, then p_{τ} is unique. This follows from the identity

$$(\,2\,) \qquad \qquad \int_{eta} p * dp = D(p - p_{\gamma}) + \int_{eta} p_{\gamma} * dp_{\gamma} \; ,$$

where D indicates the Dirichlet integral.

The function p_{γ} shall be referred to as a *capacity function* for γ . The quantity $c_{\gamma} = e^{-k_{\lambda}}$ for dim R = 2, and $k_{\gamma}^{-(m-2)}$ for dim $R = m \ge 3$ will be called the *capacity* of γ .

MODULAR CRITERION

3. Moduli. Let Ω be a union of disjoint regular regions Ω_j , $j = 1, \dots, k$. Suppose that $\partial \Omega_j$ consists of two nonempty disjoint sets β'_j and β''_j which are unions of components of $\partial \Omega_j$. Set $\beta' = \bigcup_i^k \beta'_j$ and $\beta'' = \bigcup_i^k \beta''_j$. Let u_0 be the continuous function on $\overline{\Omega}$ which is harmonic on Ω with $u_0 | \beta' = 0, u_0 | \beta'' = \log \mu$, and $\int_{\beta'} * du_0 = 1$. The constant $\mu > 1$ is called the *modulus* of the configuration $(\Omega, \beta', \beta'')$,

$$\mu = \mod(\Omega, \beta', \beta'')$$
.

The function u_0 is referred to as the modulus function.

Consider the family $U = U(\Omega, \beta', \beta'')$ of C^1 -functions u on $\overline{\Omega}$ which are harmonic on Ω with $\int_{\beta'} * du = 1$. Then we have

$$\min D_{\mathfrak{g}}(u) = D_{\mathfrak{g}}(u_0) \, .$$

This follows from the identity

$$(4) D_{\mathfrak{g}}(u) = D_{\mathfrak{g}}(u_0 - u) + D_{\mathfrak{g}}(u_0)$$

for every $u \in U$.

4. Modular criterion. Let \widetilde{F}_n be the sum of those F_n for which $\{F_n\}_1^{\infty}$ defines a boundary component in the subboundary γ . Consider

592

 $E_n = (R_{n+1} - \overline{R}_n) \cap \widetilde{F}_n$ and set $\gamma_n = \partial F_n, \ \gamma'_n = \partial E_n - \gamma_n$. In terms of (5) $\mu_{n\gamma} = \mod (E_n, \gamma_n, \gamma'_n)$

we state:

THEOREM 1. If there exists an exhaustion of R with

$$(6) \qquad \qquad \prod_{n=1}^{\infty} \mu_{n\gamma} = \infty ,$$

then the capacity of γ vanishes.

In fact, let p_n and k_n stand for p_{γ} and k_{γ} with respect to γ_n and R_n . By (1) we infer that

$$D_{{\scriptscriptstyle R}_{n+1}-\overline{\scriptscriptstyle R}_n}(p_{n+1}) \leq k_{n+1}-k_n$$
 ,

and by (3) that

$$\log \mu_{n \gamma} \leq D_{{\scriptscriptstyle E}_n}(p_{n+1})$$
 .

Therefore $\log \mu_{n\gamma} \leq k_{n+1} - k_n$, and we conclude that (6) implies

$$\lim_{n\to\infty}k_n=\infty.$$

On the other hand it is not difficult to see that $k_{\gamma} = \lim_{n} k_{n}$, whence $c_{\gamma} = 0$.

METRIC CRITERION

5. Conformally equivalent metric. Let λ be a positive C^{∞} function on R. The new metric

$$(7) d\sigma = \lambda ds$$

is conformally equivalent to the original metric ds on R. We fix a point $a \in R$ and assume that

(8)
$$R(r) = \{x \in R \mid \sigma(x, a) < r\}$$

is relatively compact in R for $0 < r < \infty$, with $R = \bigcup_{0 < r < \infty} R(r)$. Consider the minimal union $\gamma(r)$ of components of $\beta(r) = \partial R(r)$ which separates γ from a. Let

$$(9) S_{\gamma}(r) = \int_{\gamma(r)} dS_{\sigma} ,$$

where dS_{σ} is the surface element induced by $d\sigma$.

THEOREM 2. If there exists an admissible λ such that

(10)
$$\int_{\varepsilon}^{\infty} \frac{dr}{S_{\tau}(r)} = \infty \qquad (\varepsilon > 0) ,$$

then γ has vanishing capacity for R with dim R = 2. If, moreover, there exists a constant M such that

(11)
$$0 < \frac{1}{M} \leq \lambda \leq M$$
 ,

then the same conclusion holds regardless of the dimension of R.

For the proof we choose a sequence $\{r_n\}_1^\infty$ such that $\varepsilon < r_n < r_{n+1} < \infty$ and $\lim_n r_n = \infty$, with $R_n = R(r_n)$ regular. As in §4 we define $E_n = (R_{n+1} - \bar{R}_n) \cap \tilde{F}_n$ and $\mu_{n\gamma}$. We also denote by u_n the corresponding modulus function.

The proof in the case dim R = 2 will be given in §6 and that in the general case under the assumption (11), in §7.

6. The case dim R = 2. Observe that

(12)
$$\int_{E_n} |\mathcal{P}_{\sigma} u_n|^2 \, dV_{\sigma} = \int_{r_n}^{r_n+1} \left[\int_{\gamma(r)} |\mathcal{P}_{\sigma} u_n|^2 \, dS_{\sigma} \int_{\gamma(r)} dS_{\sigma} \right] \frac{dr}{S_{\gamma}(r)}$$

By the Schwarz inequality we have

(13)
$$\int_{\gamma(r)} |\mathcal{V}_{\sigma} u_n|^2 dS_{\sigma} \int_{\gamma(r)} dS_{\sigma} \ge \left(\int_{\gamma(r)} *_{\sigma} du_n \right)^2.$$

Since $*_{\sigma} = *$ and $|\nabla_{\sigma}u_n|^2 dV_{\sigma} = |\nabla u_n|^2 dV$, it is seen that (12), (13), and $D_{E_n}(u_n) = \log \mu_{n\gamma}$ imply

(14)
$$\log \prod_{1}^{n} \mu_{k\gamma} \geq \int_{r_{1}}^{r_{n+1}} \frac{dr}{S_{\gamma}(r)} .$$

We conclude that (10) implies (6), and consequently $c_{\gamma} = 0$.

7. The case dim R = m > 2. By (11) we see that

(15)
$$\int_{E_n} |\mathcal{V}_{\sigma} u_n|^2 \, d \, V_{\sigma} \leq M^{m-2} D_{E_n}(u_n) \, d \, V_{\sigma} \leq M^{m-$$

(16)
$$\int_{\gamma(r)} *_{\sigma} du_n \geq M^{-(m-2)} \int_{\gamma(r)} * du_n .$$

Therefore (14) must be modified to give

$$\log \prod\limits_{\mathbf{1}}^{n} \mu_{\scriptscriptstyle k7} \geq M^{\scriptscriptstyle -3(m-2)} \!\!\int_{r_1}^{r_{n+1}} \! rac{dr}{S_7(r)} \, .$$

594

But this sufficient to conclude that $c_i = 0$.

REMARK. Condition (11) cannot be suppressed in the case of higher dimensions.

The author is greatly indebted to Professor Leo Sario, chairman of his doctoral committee, who guided his research, and also to Professor Mitsuru Nakai, with whom the author had many invaluable discussions.

References

1. L. Sario, Capacity of the boundary and of a boundary component, Ann. of Math. 59 (1954), 135-144.

2. L. Sario, M. Schiffer, and M. Glasner, The span and principal functions in Riemannian spaces, J. Analyse Math. 15 (1965), 115-134.

Received January 30, 1967. This work was sponsored in part by the U.S. Army Research Office-Durham, Grant DA-AROD-31-124-G742. The results of this paper are part of the author's dissertation at the University of California, Los Angeles.

UNIVERSITY OF CALIFORNIA, LOS ANGELES

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN

Stanford University Stanford, California

J. P. JANS University of Washington Seattle, Washington 98105 J. DUGUNDJI

Department of Mathematics Rice University Houston, Texas 77001

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY	TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 23, No. 3 May, 1967

A. A. Aucoin, <i>Diophantine systems</i>	419
Charles Ballantine, Products of positive definite matrices. I	
David Wilmot Barnette, A necessary condition for d-polyhedrality	
James Clark Beidleman and Tae Kun Seo, Generalized Frattini subgroups of finite	441
groups	
Carlos Jorge Do Rego Borges, <i>A study of multivalued functions</i>	451
William Edwin Clark, Algebras of global dimension one with a finite ideal	162
lattice	463
Richard Brian Darst, On a theorem of Nikodym with applications to weak	473
convergence and von Neumann algebras	
George Wesley Day, Superatomic Boolean algebras	479
Lawrence Fearnley, <i>Characterization of the continuous images of all</i> <i>pseudocircles</i>	491
Neil Robert Gray, Unstable points in the hyperspace of connected subsets	515
Franklin Haimo, Polynomials in central endomorphisms	521
John Sollion Hsia, Integral equivalence of vectors over local modular lattices	527
Jim Humphreys, Existence of Levi factors in certain algebraic groups	543
E. Christopher Lance, Automorphisms of postliminal C*-algebras	547
Sibe Mardesic, Images of ordered compacta are locally peripherally metric	557
Albert W. Marshall, David William Walkup and Roger Jean-Baptiste Robert Wets,	
Order-preserving functions: Applications to majorization and order	
statistics	569
Wellington Ham Ow, An extremal length criterion for the parabolicity of	
Riemannian spaces	585
Wellington Ham Ow, Criteria for zero capacity of ideal boundary components of	
Riemannian spaces	591
J. H. Reed, <i>Inverse limits of indecomposable continua</i>	597
Joseph Gail Stampfli, <i>Minimal range theorems for operators with thin spectra</i>	601
Roy Westwick, <i>Transformations on tensor spaces</i>	613
Howard Henry Wicke, The regular open continuous images of complete metric	
spaces	621
Abraham Zaks, A note on semi-primary hereditary rings	627
Thomas William Hungerford, <i>Correction to: "A description of</i> $Mult_i(A^1, \dots, A^n)$	(20)
by generators and relations"	629
Uppuluri V. Ramamohana Rao, Correction to: "On a stronger version of Wallis' formula"	629
Takesi Isiwata, Correction: "Mappings and spaces"	630
Henry B. Mann, Josephine Mitchell and Lowell Schoenfeld, Correction to:	
"Properties of differential forms in n real variables"	631
James Calvert, Correction to: "An integral inequality with applications to the Dirichlet problem"	631
K. Srinivasacharyulu, Correction to: "Topology of some Kähler manifolds"	632
11. Sind, assenting und, correction for hopology of some number manifolds	052