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Let {X\, fau, 4} denote an inverse limit system of con-
tinua, with inverse limit space X.. Capel has shown that if
each X, is an arc (simple closed curve), then X.. is an arc
(simple closed curve) provided that A4 is countable and the
bonding maps are monotone and onto, It is shown in this
paper that a similar result holds when each X, is a pseudo-
arc, In fact, the restrictions that the bonding maps be mono-
tone and onto may be deleted.

Two theorems are proved which lead to this result, First,
it is shown that if the maps of an inverse system of indecom-
posable continua are onto, then the limit space is an indecom-
posable continuum, Next, it is shown that with no restrictions
on the bonding maps, a similar statement is true for heredit-
arily indecomposable continua.

1. Definitions and notation. All spaces are assumed to be
Hausdorff. The notation {Xj, fi., 4} represents an inverse limit system
with factor spaces X;, bonding maps f;. and directed set 4. The
inverse limit space of the system {X, fi., 4} is denoted by X... Defi-
nitions of these terms may be found in |[2]. For each \e 4, /I,
denotes the projection function of P,¢, X, onto X, restricted to X...

A continuum is a compact connected Hausdorff space. A continuum
is indecomposable if it cannot be expressed as the union of two proper
subcontinua. It is hereditarily indecomposable if each of its sub-
continua is indecomposable.

A chain is a finite collection of open sets U, --., U, such that
U,NU;# @ if and only if |i—j|<1. A space X is said to be
chainable if each open covering of X has a chain refinement. Hence
a chainable space is a continuum.

If X is a metric space and U, ---, U, is a chain covering of X
such that for some ¢ > 0, diameter U; < ¢ for 4 =1, ..., n, then the
chain U, --+, U, is said to be an e-chain covering of X. A metric
space X is snakelike if for each ¢ > 0, there exists an ¢-chain cover-
ing of X,

2. Preliminary results. The following basic results will be
needed. When proofs are omitted, they may be found in the refer-
ences as indicated.

2—1, Let {X,, fi., A} be an inverse system of compact metric
spaces, where A is countable. Then X, is a metric space.
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Proof. Since 4 is countable, we may choose a countable, linearly
ordered cofinal subset 4" of 4, such that if \;, n;e 4" and ¢ < 7, then
N < N;. Let d; be the diameter of X;. Then a metric for P, ¢, X,
is defined as follows: For {#;;} and {y,} € Py er X, set

o (g W) = 5277 0w, v)

where p; is the metric on X;,. Then since o is a metric on P,.e, X;,,
it is also a metric for X.,. Thus X. is a metric space, since X. is
homeomorphic to X7, by [2, 2.11].

2—2. Let {Xi, fi,, 4} be an inverse system of continua, with
limit space X.. If X, 1s chainable for each ned, then X. 1is
chainable.

Proof. X, is a continuum by [2, 2.5 and 2,10]. Mardesic [4] has
shown that X, is chainable if each f,, is onto., We use this result
here.

Let A, = lI(X.) and g¢,. = f,.|4,. Then by [2,2.8], {4,, 9., 4}
is an inverse system, each g,. is onto and the limit space A. of this
system is X.. Since each subcontinuum of a chainable continuum is
chainable, A, is chainable for each ne 4. Thus A. = X, is chainable
by [4].

3. Inverse limits of indecomposable continua.

3—1. THEOREM. Let {X,, fi., A} be an inverse limit system of
indecomposadble continua, where each function f,. is onto. Then the
inverse limit space X, is an itndecomposable continuum,

Proof. X. is a continuum by [2, 2.5 and 2.10]. Suppose X, is
decomposable, i.e., suppose there exist proper subcontinua H and K of
X.. such that X..= HU K.

We show first that there exists ve 4 such that IJ(H)& X,. If
not, then for all he 4, IT,(H) = X,. Let {x;} e X.. such that {x,} ¢ H,
and let N be any neighborhood of {x,}. Then there exist indices
Ny 4 = 1,2, -+ n and neighborhoods N, of each x; ¢ X, such that
N={y}e X.ly;,€N;,,7=1,2,---,m}. Since /1 is a directed set, there
exists Ny € 4 such that vy > A, 0 =1,2, -+, n. Let U, = Nio i, (V).
Then U, is an open subset of X; and N = {{y;} € X..|y; € U,}. Now
since IT,(H) = X, for all x e 4, there exists a point {#;} € H such that
1T, ({x3}) e U,,, and hence {x}}e N. Thus {x,} is a limit point of H.
This is a contradiction, since H is closed and {x;}¢ H. Thus there
exists ve 4 such that I1(H) & X,.
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Similarly, there exists B e 4 such that 1;(K) & X;. Since 4dis a
directed set, there exists 6 € 4 such that 6 > 8 and 6 > v. We show
that II,(H) S X;. For if Iy(H) = X;, then II(H) = f5(X;) since
folls = II,. But f;, is onto and hence f;(X;) = X,. Thus we have
II(H) = X,, a contradiction. Therefore, II4(H) % X;, and similarly
II{(K) & X.

Now since [II; is continuous, Il (H) and II4(K) are subcontinua
of X;. Also, IIy(X,) = X;[2,2.6]. Therefore

Xy = Iy(X..) = II(HU K) = II;(H) U IT|(K) .

This is a contradiction, since X; is indecomposable.

3—2. THEOREM. Let {X;, fi., 4} be an inverse limit system of
hereditarily indecomposable continua. Then the limit space X, is
hereditarily indecomposable.

Proof. X, is a continuum by [2, 2.5 and 2.10]. Let M be any
subcontinuum of X... We show that M is indecomposable.

Let M, = II,(M) and let ¢,, = fi.| M,. Each M, is a subcontinuum
of X, and hence indecomposable. Also, by [2, 2. 8], {M,, ¢:., 4} is an
inverse system, each g,. is onto and the limit space M.. of this system
is M. Thus M is indecomposable by Theorem 3—1.

3.—3. COROLLARY. Let {X;, fi., 4} be an inverse limit system
of hereditarily indecomposable continua. Then the tnverse limit
space X, is an indecomposable continuum.

Corollary 83—3 shows that Theorem 3—1 remains valid when the

functions f,, are not onto, provided that each X, is hereditarily
indecomposable.

3—4. THEOREM. Let {X,, fi., A} be an inverse limit system
of wpseudo-arcs. Let X. be the imverse limit space. Then X. is a
chainable, hereditarily indecomposable continuum. If Ais countable
and X. is nondegenerate, then X, is a pseudo-arc.

Proof. X. is a hereditarily indecomposable continuum by Theorem
8—2. For metric spaces, the definitions of chainable and snakelike
continua are equivalent. Thus each X, is chainable and hence X, is
chainable by 2—2.

If 4 is countable, then X, is a metric space by 2—1, and thus
snakelike. Therefore, X, is a hereditarily indecomposable snakelike
continuum, and hence a pseudo-arc if it is nondegenerate [1].
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