Pacific Journal of Mathematics

LIE ALGEBRAS OF TYPE D_4 OVER ALGEBRAIC NUMBER FIELDS

HARRY P. ALLEN

Vol. 24, No. 1 May 1968

LIE ALGEBRAS OF TYPE D_4 OVER ALGEBRAIC NUMBER FIELDS

H. P. ALLEN

If $\widetilde{\mathfrak{A}}$ is a nonassociative algebra over an algebraically closed field L, then the classification problem for $\widetilde{\mathfrak{A}}$ is the determination of all algebras \mathfrak{A} over $\emptyset \subset L$ where $\widetilde{\mathfrak{A}} \cong \mathfrak{A} \bigotimes_{\emptyset} L$. This brief note studies this problem for the case where \mathfrak{A} is the Lie algebra D_4 and \emptyset is a (finite) algebraic number field. The main result is a type of Hasse principle which tells us that a Lie algebra \mathfrak{A} (over \emptyset) of type D_4 has known type if the algebra \mathfrak{A}_{φ_p} has known type for every completion \emptyset_p of \emptyset . This is used in §3 to obtain canonical splitting fields for Lie algebras of type D_4 over \emptyset . Although the results are inconclusive with regard to the existence or nonexistence of new algebras, it indicates a (twisted) construction, which if non-vacuous, would yield new exceptional algebras of type D_{4III} .

The notation will be the same as that in the author's "Jordan Algebras and Lie Algebras of Type D_* " [2]. Throughout the present paper \emptyset , F, E, K, P will denote algebraic number fields and $\Omega(X)$ will denote the complete set of primes on the algebraic number field X. Also, we shall adopt the following convention without further mention: if X is an algebraic number field, Y a subfield and $p \in \Omega(X)$, then we shall use p to represent $p \mid Y$ and Y_p for the completion of Y, at $p \mid Y$, in X_p . We begin with a field theoretic preliminary.

1. PROPOSITION 1. Let P/ϕ be a finite dimensional Galois extension with Galois group G, and let $p \in \Omega(P)$. Then P_p/ϕ_p is Galois and $G_p = g(P_p/\phi_p)$ is isomorphic to a subgroup of G.

Proof. If P is a splitting field for $f(\lambda) \in \phi[\lambda]$ over ϕ , then P_p is a splitting field for $f(\lambda)$ over ϕ_p and thus P_p/ϕ_p is Galois. If $P = \phi(\zeta)$, then $P_p = \phi_p(\zeta)$ and the correspondence $s_p \to s_p \mid P = s_p'$ is an injection of G_p in G.

 G_p is called the local Galois group at p and we note that if E is the subfield of P/ϕ of G'_p -invariants, then $E_p = \phi_p$, for E is contained in the P_p invariants of G_p so $E_p \subseteq \phi_p$.

To avoid unnecessary complication we let Q be the field of rational numbers, \mathfrak{C}_0 the split Cayley algebra over Q, $\mathfrak{J} = \mathfrak{h}(\mathfrak{C}_{03}, 1)$ the split exceptional central simple Jordan algebra over Q and $\mathfrak{D} = \mathfrak{D}(\mathfrak{J}/\Sigma Qe_i)$ the split Lie algebra of type D_i over Q. If X is any field of charac-

¹ The author has recently shown, in collaboration with J. Ferrar, that this construction can be carried out over algebraic number fields.

teristic 0, then $\mathfrak{D}_X = \mathfrak{D}(\mathfrak{J}_X/\Sigma Xe_i)$ will be taken as the split Lie algebra of type D_4 over X.

Now let $\mathfrak L$ be a Lie algebra of type D_4 over ϕ with P/ϕ a finite dimensional Galois splitting extension. If $p \in \mathfrak Q(P)$, then $\mathfrak L_{\phi_p}$ is a Lie algebra of type D_4 over ϕ_p split by P_p . We first determine the relationship between the pre-cocycle of G in $\operatorname{Aut}_{\phi}(\mathfrak D_P)$ corresponding to $\mathfrak L_{\phi_p}(\mathfrak L_P)$, and the pre-cocycle of G_p in $\operatorname{Aut}_{\phi_p}(\mathfrak D_P)$ corresponding to $\mathfrak L_{\phi_p}(\mathfrak L_P)$.

Thus let $r \to \eta(r) \leftrightarrow C_r = [p(r), T(r)]$ be the pre-cocycle of G in $\operatorname{Aut}_{\phi}(\mathfrak{D}_P)$ corresponding to \mathfrak{L} . If $h' = h_p \mid P \in G_p'$, then h' has a unique extension to G_p , viz., h_p . We let C_{h_p} be the h_p -semilinear extension of $C_{h'}$ to $\Gamma L_{\phi_p}(\mathfrak{F}_{P_p}/\Sigma P_p e_i)$. $C_{h_p} = [p(h_p \mid P), T(h_p)]$ where $T(h_p)$ is the h_p -semilinear extension of $T(h_p \mid P)$ ([3] p. 12).

We have $C_{h_p}C_{r_p}=C_{h_pr_p}\delta_{h',r'}$ where $C_{h'}C_{r'}=C_{h'r'}\delta_{h',r'}$. Thus if $\eta(h_p) \leftrightarrow C_{h_p}$, then $h_p \to \eta(h_p)$ is a pre-cocycle of G_p in $\operatorname{Aut}_{\phi_p}(\mathfrak{D}_{P_p})$. The fixed ϕ_p -form of \mathfrak{D}_{P_p} associated with this pre-cocycle clearly contains \mathfrak{L}_{ϕ_p} , so it must be \mathfrak{L}_{ϕ_p} .

PROPOSITION 2. Let $\mathfrak D$ be a Lie algebra of type D_4 over ϕ with P/ϕ a finite dimensional Galois splitting extension and F the canonical D_4 -field extension of $\mathfrak D$. If $p\in \Omega(P)$ then

- (i) The D_4 type of \mathfrak{L}_{ϕ_p} is the D_4 type of a canonical extension of $\mathfrak{L}([2] \S 2)$.
 - (ii) the canonical D_{I} -field extension of \mathfrak{L}_{ϕ_n} is F_p .
- (iii) if L is exceptional then \mathfrak{L}_{ϕ_p} is exceptional if and only if $[F_r\colon\phi_r]\geqq 3$.
- *Proof.* (i) is a direct consequence of the preceding discussion. Let F(p) be the canonical D_{4I} -field extension of \mathfrak{L}_{ϕ_p} and suppose that F(p) is the invariants of $H_p \subset G_p$. If F' is the invariants of H'_p then $F \subset F'$ so $F_p \subseteq F(p)$. But \mathfrak{L}_{F_p} is of type D_{4I} so $F_p \supseteq F(p)$. If \mathfrak{L} is exceptional then this shows that \mathfrak{L}_{ϕ_p} is exceptional if and only if $[F_p:\phi_p] \ge 3$.
- 2. The classical results on central simple associative algebras and quadratic forms over algebraic number fields are used to deduce the next two important results.
- THEOREM 1. Let $\mathfrak L$ be a Lie algebra of type D_* over an algebraic number field ϕ . Then there exists a finite subset S of $\Omega(\phi)$ such that $\mathfrak L_{\phi_n}$ is a Jordan D_* for all $p \in \Omega(\phi) S$.
- *Proof.* First suppose that \mathfrak{L} is of type $D_{\mathfrak{U}}$ and let $\mathfrak{L}^* = \mathfrak{U}_1 \oplus \mathfrak{U}_2 \oplus \mathfrak{U}_3$ be its ϕ -enveloping algebra ([2] § 2). Let S be any finite subset of

 $\Omega(\phi)$ such that $\mathfrak{A}_{i\phi_p} \sim 1$, i=1,2,3 for all $p \in \Omega(\phi) - S$ ([1] Chap IX). Since $\mathfrak{L}_{\phi_p}^*$ is clearly the ϕ_p -enveloping algebra of \mathfrak{L}_{ϕ_p} for any $p \in \Omega(\phi)$, we see that for $p \in \Omega(\phi) - S$, $\mathfrak{L}_{\phi_p}^*$ is a sum of matrix algebras over ϕ_p . This implies that \mathfrak{L}_{ϕ_p} is a Jordan D_4 ([2] Th. I).

Now let $\mathfrak L$ be an arbitrary Lie algebra of type D_4 and let F/ϕ be its canonical D_{4I} -field extension. Let T be any finite subset of $\Omega(F)$ such that $(\mathfrak L_F)_{F_p}$ is a Jordan D_4 for all $p\in \Omega(F)-T$, and choose S as the set of all traces of elements of T on ϕ . If $p\mid \phi\in \Omega(\phi)-S$ then $p\in \Omega(F)-T$ and $(\mathfrak L_{\phi_p})_{F_p}=\mathfrak L_{F_p}=(\mathfrak L_F)_{F_p}$ is a Jordan D_4 . Since F_p is the canonical D_{4I} -field extension of $\mathfrak L_{\phi_p},\mathfrak L_{\phi_p}$ is a Jordan D_4 ([1] Th. I).

THEOREM 2. Let $\mathfrak L$ be a Lie algebra of type $D_{\mathfrak L}$ over an algebraic number field ϕ . Then $\mathfrak L$ is a Jordan $D_{\mathfrak L}$ if and only if $\mathfrak L_{\phi_p}$ is a Jordan $D_{\mathfrak L}$ for every $p \in \Omega(\phi)$.

Proof. One direction is clear. For the other let F be the canonical D_{4I} -field extension of $\mathfrak L$ and let $\mathfrak L_F^*=\mathfrak A_1 \oplus \mathfrak A_2 \oplus \mathfrak A_3$ be the F-enveloping algebra of $\mathfrak L_F$. Our hypothesis implies that $\mathfrak L_{F_p}=(\mathfrak L_{\phi_p})_{F_p}$ is a Jordan D_4 for every $p\in \mathfrak Q(F)$. Thus $\mathfrak A_{iF_p}\sim 1,\, i=1,2,3$ and all $p\in \mathfrak Q(F)$, so $\mathfrak A_i\sim 1,\, i=1,2,3$. ([1] Chap IX). Thus $\mathfrak L_F$ is a Jordan D_{4I} and $\mathfrak L_F$ is a Jordan D_{4I} and $\mathfrak L_F$ is a Jordan D_{4I} and $\mathfrak L_F$ is a Jordan D_{4I} .

COROLLARY. \mathfrak{L} is split if and only if \mathfrak{L}_{ϕ_n} is split for all $p \in \Omega(\phi)$.

Proof. One direction is trivial. For the other, Theorem 1 and Theorem 2 imply that $\mathfrak L$ is a Jordan D_{4I} . If $\mathfrak L = \mathfrak L(\mathfrak L, n(\cdot))$, $\mathfrak L$ a Cayley algebra over ϕ , then $\mathfrak L_{\phi_p}$ split for all p implies that $\mathfrak L_{\phi_p}$ is isotropic for all p. Thus $\mathfrak L$ is isotropic, ([4], Th. 66.1) hence split, and $\mathfrak L$ is split.

3. This last section is devoted to a proof of Proposition 3. Using this proposition we are able to give a fairly explicit description of pre-cocycles arising from algebras of type D_{4III} .

PROPOSITION 3. Let \mathfrak{L} be a Lie algebra of type D_4 over an algebraic number field \mathfrak{O} , and let F be the canonical D_{4I} -field extension of \mathfrak{L} . Then \mathfrak{L} is split by a Galois extension of degree at most $2[F:\mathfrak{O}]$.

Proof. We will only give the argument when $\mathfrak L$ is of type D_{4I} or D_{4III} . The other cases are similar. Let S be a finite subset of $\Omega(\phi)$ such that $\mathfrak L_{\phi_p}$ is a Jordan ${}_4\mathfrak D$ if $p\in\Omega(\phi)-S$. Without loss of generality we suppose that S contains all the real primes on ϕ . If $p\in S$, then $\mathfrak L_{\phi_p}$ is necessarily of type D_{4I} . By the local classification of D_4 's ([2] § 4), $\mathfrak L_{\phi_p}$ is split by a quadratic extension $K_{(p)}/\phi_p$. Let $K_{(p)}$ be a root field for $\lambda^2 + \alpha_p \in \phi[\lambda]$. By the approximation theorem,

since S consists of inequivalent primes, there exists an $\alpha \in \phi$ with each $|\alpha - \alpha_p|_p$ sufficiently small. Let K be a root field for $\lambda^2 + \alpha$ over ϕ and F the canonical D_4 -field extension of \mathfrak{L} . Note that $K_p = K_{(p)}$ for all $p \in S$.

If $\mathfrak L$ is of type D_{4I} then it is easy to see that $(\mathfrak L_K)_{K_p}$ is split for all $p \in \mathcal Q(K)$. Thus $\mathfrak L_K$ is split. If $\mathfrak L$ is of type D_{4III} then we claim that $\mathfrak L$ is split by $P = K \bigotimes_{\phi} F$. Let $p \in \mathcal Q(P)$. If $p \mid \phi \in \mathcal Q(\phi) - S$, then $\mathfrak L_{\phi_p}$ is a Jordan D_4 . If p is complex, $\mathfrak L_{\phi_p}$ is clearly split whereas if p is discrete, $\mathfrak L_{\phi_p}$ is split by its canonical D_{4I} field extension ([2] § 4). In any event, $(\mathfrak L_P)_{P_p} = (\mathfrak L_{\phi_p})_{P_p} = ((\mathfrak L_{\phi_p})_{P_p})_{P_p}$ is split. If $p \mid \phi \in S$, then $\mathfrak L_{\phi_p}$ is split by $K_{(p)} = K_p \subset P_p$ so $(\mathfrak L_P)_{P_p}$ is split. Thus $(\mathfrak L_P)_{P_p}$ is split at every $p \in \mathcal Q(P)$ and the corollary to Theorem 2 shows that $\mathfrak L_P$ is split. Not that P is sixth degree cyclic.

Now let $\mathfrak L$ be a Lie algebra of type D_{4III} over $\mathfrak O$, with $P/\mathfrak O$ a cyclic sixth degree Galois splitting extension. $P/\mathfrak O$ contains a unique quadratic subfield E/ϕ . $\mathfrak L_E$ is a D_{4III} split by P, so $\mathfrak L_E$ is a Jordan D_4 . If $\mathfrak L_E = \mathfrak D(\mathfrak J'/\mathfrak r)$, then since $\mathfrak J'$ is reduced and is split by P/E, a cubic extension, $\mathfrak J'$ is itself split. $\mathfrak L$ of course is isomorphic to P. The isomorphism condition for Jordan D_4 's ([2] Th. II) implies that $\mathfrak L_E$ is a Steinberg D_{4III} ([2] (10)).

Let $r \to p(r)$ be the anti-homomorphism of $g(P/\phi) = G$ onto A_3 determined by \mathfrak{L} , and choose s as a generator for G with p(s) = (123). Let \mathfrak{L} be any Cayley algebra over ϕ , split by P, and let S be the s-semilinear automorphism of \mathfrak{L}_P which is one on \mathfrak{L} . Finally set $D_S = [(123), S]$ (cf. [2] (10)), and let $r \to \eta(r) \leftrightarrow C_r$ be the pre-cocycle of G in $\operatorname{Aut}_{\phi}(\mathfrak{D}_P)$ corresponding to \mathfrak{L} . The preceding observation about \mathfrak{L}_E enables us to assume that $C_s^2 = D_s^2 \mu$, $\mu \in K$. By replacing C_s by $C_S \lambda$, for some suitable $\lambda \in K$, if necessary, we may assume that C_s and D_s^2 commute. This implies that $\mu^{s^2} = D_s^{-2} \mu D_s^2 = \mu$. If $C_s^6 = \delta \in K$, then $\delta = \mu^3$ and $\delta^s = C_s^{-1} \delta C_s = D_s^{-1} \delta D_s = \delta$ so $(\mu^3)^s = \mu^3$. Applying $\zeta(\cdot)$ to the relation $C_s^2 = D_s^2 \mu$ we obtain

$$\zeta(C_s)^s \zeta(C_s) = \mu^2.$$

But $\zeta(C_s)^s \zeta(C_s)$ is fixed under s since $\zeta(C_s)$ is fixed s^z . Thus $(\mu^z)^s = \mu^z$. This, together with the previous relation—shows that $\mu = \mu^s$.

For simplicity write $\zeta(C_s)=(\rho,\,p^{s^2},\,\rho^{s^4})\,\mu=(\beta,\,\beta^{s^2},\,\beta^s),\,\beta^{s^3}=\beta$. (1) is now equivalent to $\rho\rho^{s^3}=\beta^2$. Since $(\rho\beta^{-1})(\rho\beta^{-1})^{s^3}=1,\,\rho=\lambda^{-1}\lambda^{s^3}\beta$ and $\rho\lambda^2=\lambda\lambda^{s^3}\beta\in F$, the canonical D_{4I} -field extension of \mathfrak{L} . Replacing C_s by $\widetilde{C}_s=C_s(\lambda,\,\lambda^{s^2}\lambda^{s^4})$ we again obtain $\zeta(\widetilde{C}_s)^{s^2}=\zeta(\widetilde{C}_s)$. But

$$\zeta(\widetilde{C}_s) = (\lambda \lambda^{s^3} \beta, ((\lambda \lambda^{s^3} \beta)^{s^2}, (\lambda \lambda^{s^3} \beta)^s)$$

and is fixed under s^s . Thus $\zeta(\widetilde{C}_s)^s = \zeta(\widetilde{C}_s)$. We may affect a similar

alteration of C_s so that $\zeta(C_s)=(\alpha_1,\alpha_1^{s^2},\alpha_1^s)=\alpha$ where $\alpha_1^{s^3}=\alpha_1$ and $\alpha_1\alpha_1^s\alpha_1^{s^2}=1$, i.e., \widetilde{C}_s , in addition to the above is norm preserving. Calculating we see that $\widetilde{C}_s^2=D_s^2\alpha$. Then $\widetilde{C}_s^6=\alpha^s$ and $\mathfrak L$ is a Jordan D_4 if and only if $\alpha_1\in N_{P/F}(P^*)$. Setting $\widetilde{C}_s=D_sE$ we see that $D_s\alpha=ED_sE$. The simplest form of this equation occurs where E and D_S commute and we obtain $E^2=\alpha$. Thus we are led to the following (possibly vacuous) construction.

Let \Im be a reduced exceptional central simple Jordan algebra over a field ϕ , P a cyclic sixth degree extension of ϕ and F a subfield of \Im isomorphic to the cubic subfield of P/ϕ . Then if there exists an $E \in GL(\Im F)$ such that

- (i) $E \in GL(\mathfrak{F}_P/\{Pe_i\}_i)$,
- (ii) $\zeta(E) = (\alpha_1, \alpha_1^{s^2}, \alpha_1^s)$ where $\alpha_1 \notin N_{P/F}(P^*)$ and
- (iii) $E^2 = \zeta(E)$,

then the s-semilinear extension of E to \mathfrak{F}_P induces a pre-cocycle corresponding to a non-Jordan D_{4III} .

BIBLIOGRAPHY

- 1. A. A. Albert, Structure of algebras, A. M. S. Coll. (1939).
- 2. H. P. Allen, Jordan algebras and Lie algebras of type D4, J. of Algebra (1967).
- 3. N. Jacobson, Triality and Lie algebras of type D4, Rend. Cir. Mat. de Palermo.
- 4. O. T. O'Meara, Introduction to Quadratic Forms, Springer Verlag, 1963.

Received January 17, 1967.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN

Stanford University Stanford, California

J. P. Jans

University of Washington Seattle, Washington 98105 J. Dugundji

Department of Mathematics

Rice University Houston, Texas 77001

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION

TRW SYSTEMS

NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 24, No. 1

May, 1968

Harry P. Allen, Lie algebras of type D_4 over algebraic number fields	1		
Charles Ballantine, <i>Products of positive definite matrices. II</i>	7		
David W. Boyd, The spectral radius of averaging operators	19		
William Howard Caldwell, <i>Hypercyclic rings</i>	29		
Francis William Carroll, Some properties of sequences, with an application			
to noncontinuable power series	45		
David Fleming Dawson, Matrix summability over certain classes of			
sequences ordered with respect to rate of convergence	51		
D. W. Dubois, Second note on David Harrison's theory of preprimes	57		
Edgar Earle Enochs, A note on quasi-Frobenius rings	69		
Ronald J. Ensey, Isomorphism invariants for Abelian groups modulo			
bounded groups	71		
Ronald Owen Fulp, Generalized semigroup kernels	93		
Bernard Robert Kripke and Richard Bruce Holmes, Interposition and			
approximation			
Jack W. Macki and James Sai-Wing Wong, Oscillation of solutions to			
second-order nonlinear differential equations	111		
Lothrop Mittenthal, Operator valued analytic functions and generalizations			
of spectral theory			
T. S. Motzkin and J. L. Walsh, A persistent local maximum of the pth power			
deviation on an interval, $p < 1 \dots$	133		
Jerome L. Paul, Sequences of homeomorphisms which converge to			
homeomorphisms	143		
Maxwell Alexander Rosenlicht, Liouville's theorem on functions with			
elementary integrals	153		
Joseph Goeffrey Rosenstein, Initial segments of degrees			
H. Subramanian, <i>Ideal neighbourhoods in a ring</i>	173		
Dalton Tarwater, Galois cohomology of abelian groups			
James Patrick Williams, Schwarz norms for operators	181		
Raymond Y. T. Wong, A wild Cantor set in the Hilbert cube.	189		