Pacific Journal of Mathematics

SOME PROPERTIES OF SEQUENCES, WITH AN APPLICATION TO NONCONTINUABLE POWER SERIES

FRANCIS WILLIAM CARROLL

Vol. 24, No. 1 May 1968

SOME PROPERTIES OF SEQUENCES, WITH AN APPLICATION TO NONCONTINUABLE POWER SERIES

F. W. CARROLL

For a real sequence $f=\{f(n)\}$ and positive integer N, let F^N denote the sequence of N-tuples $\{(f(n+1),\cdots,f(n+N))\}$. A functional equation method due to Kemperman is used to obtain a sufficient condition on s in order that s^N have an independent N-tuple among its cluster points. If a bounded s has the latter property, and if g=rs, where $r(n)\to\infty$ and $r(n+1)/r(n)\to 1$ as $n\to\infty$, then there is a subsequence S of the sequence of positive integers such that, for almost all real α , the restriction of αg^N to S is uniformly distributed (mod 1) in the N-cube,

Let F be an analytic function whose Maclaurin series has bounded coefficients $\{a_n\}$ which satisfy the additional requirement

$$\lim_{M o \infty} \inf_{0 \le k < \infty} \sum_{n=k}^{k+M} |a_n| = \infty$$
 .

If $a_n = |a_n| \exp{\{2\pi i f(n)\}}$, then the density (mod 1) of f^N for each N is sufficient in order that F have the unit circle as a natural boundary. Hence, a metric result for noncontinuable series is obtained from the results for sequences.

1. Notation. For x real, let ((x)) = x - [x], and $e(x) = \exp(2\pi i x)$. h_1, \dots, h_N will denote an N-tuple of integers, not all of which are zero. The sequence of nonnegative integers will be denoted by Z, and subsequences of Z by S_1 , S_2 , etc. For a real sequence f, we denote by Δf the sequence $\{f(n+1) - f(n)\}$ and

$$\Delta^{j+1}f = \Delta(\Delta^j f)$$
, $(j = 1, 2, \cdots)$

2. The property (PN).

DEFINITION. A bounded sequence s of real numbers will be said to have *property* (PN) if there is an independent N-tuple among the cluster points of s^N . In other words, s has property (PN) if there is a subsequence S of Z such that for every N-tuple h_1, \dots, h_N of integers not all zero, there holds

(2.1)
$$\lim_{n\to\infty} |h_n s(n+1) + \cdots + h_N s(n+N)| > 0, \qquad (n \in S)$$

We shall be interested in sequences s of the following form:

$$s(n) = \varphi(\psi(n)), \qquad (n \in \mathbb{Z}),$$

where φ is a function of period 1 with at most a nowhere dense set of points of discontinuity, and ψ has the property (QN).

(QN) There exists a subsequence S_1 of Z such that

(2.3) (i)
$$\Delta^j \psi(n)$$
 converges (mod 1) for $n \to \infty$, $n \in S_1$ $(j=2,\cdots,N)$

(ii) $\{(((\psi(n)), ((\Delta \psi(n))): n \in S_1\} \text{ is not nowhere dense.}\}$

THEOREM 2.1. Let s be of the form (2.2), where φ and ψ have the properties listed above. Then either s has property (PN), or else φ agrees on some interval $I \subset [0,1]$ with a polynomial of degree N-2 at most.

Proof. Under the conditions on φ and ψ , it is possible to obtain a subsequence S_2 of S_1 and an open disk D in the plane such that

(2.4) (i)
$$\lim_{n\to\infty} \varDelta^j \psi(n) = \tau_j \pmod{1}$$
, $(n\in S_2)$, $(j=2,\cdots,N)$,

- (ii) $\{(((\psi(n)), ((\Delta\psi(n))): n \in S_2\} \text{ is dense in } D$,
- (iii) for every (τ_0, τ_1) in D, and every p, $1 \le p \le N$, the point

$$au_{\scriptscriptstyle 0} + p au_{\scriptscriptstyle 1} + \sum\limits_{j=2}^p \left(egin{array}{c} p \ j \end{array}
ight)\! au_{\scriptscriptstyle j}$$

is a point of continuity for φ .

For each (τ_0, τ_1) in D, a subsequence $S_3 = S_3(\tau_0, \tau_1)$ of S_2 can be chosen so that the corresponding subsequence of (2.4 (ii)) converges to (τ_0, τ_1) . In this case, as $n \to \infty$, $n \in S_3$, one has for every h_1, \dots, h_N ,

$$egin{aligned} \lim_{n o\infty}\sum_{p=1}^N h_p s(n+p) &= \lim_{n o\infty}\sum_{p=1}^N h_p arphi(\psi(n) \ &+ p \varDelta \psi(n) + \sum_{j=2}^p \left(rac{p}{j}
ight) \varDelta^j \psi(n)) \end{aligned}$$

so that

(2.5)
$$\lim_{n\to\infty}\sum_{p=1}^N h_p s(n+p) = \sum_{p=1}^N h_p \varphi \left(\tau_0 + p\tau_1 + \sum_{j=2}^p \binom{p}{j} \tau_j\right), \qquad (n \in S_3).$$

Suppose now that s does not have property (PN). Then for each (τ_0, τ_1) in D, there is an N-tuple h_1, \dots, h_N such that the right hand member of (2.5) is zero. Hence D is a countable union of closed sets

$$F=F(h_{\scriptscriptstyle 1},\,\cdots,\,h_{\scriptscriptstyle N})=\{(au_{\scriptscriptstyle 0},\, au_{\scriptscriptstyle 1})\in D\colon (2.5)\;\; ext{vanishes}\}$$
 .

Some F, then, must contain an open subdisk D_1 , with center

 (τ'_0, τ'_1) . That is, there exists an N-tuple h_1, \dots, h_N of integers not all zero with the property that for all sufficiently small positive h and k,

$$\sum\limits_{p=1}^{N}h_{p}arphi\Bigl(h\,+\,pk\,+\, au_{_{0}}^{\prime}+\,p au_{_{1}}^{\prime}+\sum\limits_{_{j=2}}^{p}\left(egin{array}{c}p\j\end{pmatrix}\! au_{_{j}}\Bigr)=\,0$$
 .

The assertion of the theorem follows upon taking

$$\varphi_p(x) = h_p \varphi \Big(x + \tau_0' + p \tau_1' + \sum_{j=2}^p \binom{p}{j} \tau_j \Big)$$

in the following lemma, a weak version of one due to Kemperman [4, p. 41]. The proof is included for completeness.

LEMMA. Let a>0, and let $\varphi_1, \dots, \varphi_N$ be real functions, with φ_j defined and continuous on $I_j=(-(j+1)a,(j+1)a),(j=1,\dots,N)$. Suppose that for all x,y in (-a,a), there holds

(2.6)
$$\sum_{i=1}^{N} \varphi_{j}(x+jy) = 0.$$

Then φ_i is equal on I_i to a polynomial of degree N-2 at most.

Proof. We may suppose that $N \ge 2$ (the case N = 1 is trivial), and that the lemma holds for N - 1. Let 0 < b < a, and let $I'_j = (-(j+1)b, (j+1)b)$.

Next, we choose and keep fixed a number h, $0 < h < \min(b, a - b)$. For this h, and $j = 1, \dots, N$, let

$$\widetilde{\varphi}_j(x) = \varphi_j(x + (1 - j/N)h) - \varphi_j(x), \qquad (x \in I'_j).$$

We note that each $\widetilde{\varphi}_j$ is continuous, and $\widetilde{\varphi}_N \equiv 0$. Moreover, if x, y are in (-b,b), then x,y,x+h, and y-h/N are in (-a,a). Thus, for all x,y in (-b,b), we have

$$\sum\limits_{j=1}^{N-1} \widetilde{arphi}_{j}(x+jy) = \sum\limits_{j=1}^{N} arphi_{j}(x+h+j(y-h/N)) - \sum\limits_{j=1}^{N} arphi_{j}(x+jy) = 0$$
 .

The induction hypothesis implies that, for $j=1,\dots,N-1,\widetilde{\varphi}_j$ is a polynomial of degree N-3 at most on I_j' . Hence φ_j is, on I_j' , the sum of a polynomial of degree N-2 at most and a function of period (1-j/N)h. But such a representation is given for every sufficiently small positive h, which, with the continuity of φ_j , implies that φ_j is a polynomial of degree N-2 at most on I_j' , $(1 \le j \le N-1)$. From the arbitrariness of b, φ_j is such a polynomial on I_j . Finally, (2.6) shows that φ_N is also such a polynomial on I_N .

In a previous paper [1], results of v.d. Corput were used to

obtain various sufficient conditions on a real sequence ψ in order that ψ satisfy condition (I):

- (I) There exists a sequence S such that $\lim \Delta^{j}\psi(n)$ $(n \in S)$ exists for all $j \geq r$, while $\{(\psi(n), \Delta\psi(n), \cdots, \Delta^{r-1}\psi(n)): n \in S\}$ is uniformly distributed (mod 1) in the r-dimensional unit cube.
- (I) clearly implies that ψ has property (QN) for every $N \ge 2$. The reader is referred to the paper for details and proofs.

3. A metric result for uniform distribution in the N-cube.

THEOREM 3.1 Let $g = \{g(n): n \in Z\}$ be a sequence of real numbers. Let there exist a subsequence S_{\circ} of Z such that, for every N-tuple h_1, \dots, h_N of integers not all zero there holds

(3.1)
$$\lim |\sum_{p=1}^{N} h_p g(n+p)| = \infty , \quad \text{as } n \to \infty , \quad n \in S_0 .$$

Then there exists a subsequence S of S_0 such that, for almost all real α , the sequence $(\alpha g^N) \mid S$ is uniformly distributed (mod 1) in the N-cube.

Proof. Let the set of all such N-tuples be ordered, with, say, h'_1, \dots, h'_N as the first. Let a subsequence $S_1 \subset S_0$ be taken such that

$$\sum_{n=1}^{N} h'_{p} \{g(n+p) - g(m+p)\}$$

is either greater than 1 for every n, m in S_1 , with n>m, or else is less than -1 for every such n and m. Successively extracting subsequences $S_1\supset S_2\supset \cdots$ in this way, and then using a diagonal procedure, one finally obtains a sequence S such that, for every N-tuple h_1, \cdots, h_N , there is an $m_0=m_0(h_1, \cdots, h_N)$ such that one has either

(3.2)
$$\sum_{p=1}^{N} h_p \{g(n+p) - g(m+p)\} \ge 1$$

for all n and m in S with $n > m \ge m_0$ or else

(3.3)
$$\sum_{p=1}^{N} h_p \{g(n+p) - g(m+p)\} \leq -1$$

for all such n and m.

By a well-known result of Weyl [6, p. 348], either condition (3.2) or (3.3) implies that, for almost all real α , the sequence

$$\alpha \sum_{p=1}^{N} h_p g(n+p) \qquad (n \in S)$$

is uniformly distributed (mod 1). There being only countably many N-tuples, it follows that, for almost all α , (3.4) is uniformly distributed (mod 1) for every N-tuple h_1, \dots, h_N . But this shows [2, p. 66] that for almost all α the sequence $(\alpha g^N) \mid S$ is uniformly distributed (mod 1) in the N-cube.

It is easy to see that if $\theta > 1$ is a transcendental number and $g(n) = \theta^n$, then Theorem 3.1 is applicable. The next result shows the less obvious fact that Theorem 3.1 also applies if, for instance, $g(n) = n^3 \log n \sin n^2$.

THEOREM 3.2. Let $g = \{g(n): n \in z\}$ be of the form

$$(3.5) g(n) = r(n)s(n) , n \in Z ,$$

where s has property (PN), while

(3.6)
$$\lim r(n) = \infty$$
, $\lim (r(n+1)/r(n)) = 1$.

Then there is a subsequence S_0 of Z such that (3.1) holds for every N-tuple h_1, \dots, h_N of integers not all zero.

Proof. For $p = 1, 2, \dots, N$, it follows from (3.6) that

$$r(n+p) = r(n)(1+0(1))$$
, as $n \to \infty$.

Therefore we have

(3.7)
$$g(n+p) = r(n)s(n+p)(1+o(1))$$
, as $n \to \infty$, $p = 1, \dots, N$.

Since s has property (PN), there exists a subsequence S_0 of Z such that

(2.1)
$$\lim_{n\to\infty} |h_{1}s(n+1)+\cdots+h_{N}s(n+N)|>0, \qquad (n\in S_{0})$$

for all N-tuples h_1, \dots, h_N of integers not all zero. But (3.6), (3.7), and (2.1) imply (3.1).

4. An application to noncontinuable power series. Perry [5] has proved that, for every real sequence $f = \{f(n): n \in Z\}$, there exists a sequence of moduli $\{|a_n|: n \in Z\}$ such that the power series

$$(4.1) \qquad \qquad \sum_{n=0}^{\infty} |a_N| e(f(n)) z^n$$

has radius of convergence 1 and the analytic function it represents can be continued analytically across a semicircle of the unit circle. However, if the additional requirements

$$|a_n| = 0(1) \qquad \text{as } n \to \infty$$

and

(4.3)
$$\lim_{N \to \infty} \inf_{0 \le k \le \infty} \sum_{n=-k+1}^{k+N} |a_n| = \infty$$

are imposed, then there are conditions on f sufficient that (4.1) represent a function with |z| = 1 as its natural boundary. Some such conditions were given in [1]. Theorem 4 gives a metric result in this direction.

THEOREM 4. Let $\{|a_n|: n \in Z\}$ satisfy (4.2) and (4.3). Let g be a real sequence which, for each N, satisfies the hypothesis of Theorem 3.1. For each real α , let

$$(4.4) \hspace{1cm} F_{\scriptscriptstyle \alpha}(z) = \sum\limits_{\scriptscriptstyle n=0}^{\infty} |\, a_{\scriptscriptstyle n} \,|\, e(\alpha g(n)) z^{\scriptscriptstyle n}, \hspace{1cm} |\, z \,| < 1 \,\,.$$

Then the set of α for which F_{α} can be continued across an arc of the unit circle has measure zero.

Example. $\sum e(\alpha n \sin n^2) z^n$ has |z| = 1 as its natural boundary for almost all a.

For $N=2,3,\cdots$, let A_N be the set of those real α for which αg^N is dense (mod 1) in the unit N-cube.

By Theorem 3.1, A_N contains almost all α , and it follows that almost all α are in A_N for every N. For each such α , and each $z_0 = e(\theta_0)$, there holds

(4.5)
$$\limsup_{k\to\infty} |\sum_{k+1}^{k+N} a_n e(\alpha g(n) + n\theta_0)| \ge \liminf_{k\to\infty} \sum_{k+1}^{k+N} |\alpha_n|.$$

In view of (4.3), (4.5) shows that the partial sums of the series in (4.4) are unbounded at z_0 . By (4.2) and a well-known theorem of Fatou [3, p. 391], it follows that z_0 is a singularity for F.

References

- 1. F. W. Carroll, On some classes of noncontinuable analytic functions, Trans. Amer. Math. Soc. **94** (1960), 74-85.
- 2. J. W. Cassells, An introduction to Diophantine approximation, Cambridge Tract 45, Cambridge Univ. Press, 1957.
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400.
 J.H.B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86 (1957), 28-56.
- 5. R. L. Perry, A theorem on power series whose coefficients have given arguments, J. Lond. Math. Soc. 35 (1960), 172-176.
- 6. H. Weyl, Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352.

Received September 19, 1966. This research was supported by a grant from the National Science Foundation.

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN

Stanford University Stanford, California

J. P. JANS

University of Washington Seattle, Washington 98105

J. Dugundji

Department of Mathematics Rice University Houston, Texas 77001

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 24, No. 1 May, 1968

Harry P. Allen, Lie algebras of type D_4 over algebraic number fields	1
Charles Ballantine, <i>Products of positive definite matrices. II</i>	7
David W. Boyd, The spectral radius of averaging operators	19
William Howard Caldwell, <i>Hypercyclic rings</i>	29
Francis William Carroll, Some properties of sequences, with an application	
to noncontinuable power series	45
David Fleming Dawson, Matrix summability over certain classes of	
sequences ordered with respect to rate of convergence	51
D. W. Dubois, Second note on David Harrison's theory of preprimes	57
Edgar Earle Enochs, A note on quasi-Frobenius rings	69
Ronald J. Ensey, Isomorphism invariants for Abelian groups modulo	
bounded groups	71
Ronald Owen Fulp, Generalized semigroup kernels	93
Bernard Robert Kripke and Richard Bruce Holmes, Interposition and	
approximation	103
Jack W. Macki and James Sai-Wing Wong, Oscillation of solutions to	
second-order nonlinear differential equations	111
Lothrop Mittenthal, Operator valued analytic functions and generalizations	
of spectral theory	119
T. S. Motzkin and J. L. Walsh, A persistent local maximum of the pth power	
deviation on an interval, $p < 1 \dots \dots \dots \dots$	133
Jerome L. Paul, Sequences of homeomorphisms which converge to	
homeomorphisms	143
Maxwell Alexander Rosenlicht, Liouville's theorem on functions with	1.50
elementary integrals	153
Joseph Goeffrey Rosenstein, <i>Initial segments of degrees</i>	163
H. Subramanian, <i>Ideal neighbourhoods in a ring</i>	173
Dalton Tarwater, Galois cohomology of abelian groups	177
James Patrick Williams, Schwarz norms for operators	181
Raymond Y. T. Wong, A wild Cantor set in the Hilbert cube	189