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A NOTE ON QUASI-FROBENIUS RINGS

EpGAr ENOCHS

Morita and Curtis proved independently that if A is a
quasi-Frobenius ring and P, finitely generated, projective,
faithful, left A-medule, then the ring of endomorphisms
B = End(P) is quasi-Frobenius and P is a finitely generated,
projective, faithful, left B-module. It also turns out that
A = Endps(P). We prove a theorem implying that every
quasi-Frobenius ring can be represented as such a ring of
endomorphisms,

In fact the following holds:

THEOREM. If A is a quasi-Frobenius ring there is a Frobenius
ring B such that B/Rad (B) is the product of a finite number of
(not mnecessarily commutative) fields and a finitely generated, pro-
jective, faithful, left B-module P such that A = Endy(P). If B if
another Frobenius ring such that B'/Rad (B’') ts the product of a
JSintte number of fields and P' a finitely generated, projective, faith-
ful, left B'-module such that A = End, (P) then there is a sema-
linear isomorphism of the B-module P into the B'-module P’,

We note the results mentioned above appear in [2, pp. 405-406].

Proof. Let A, be A considered as a left A-module. Let A, =
E, + .-« + K, (direct) where each E; is nonzero and indecomposable,
and so has a simple socle. Consider the equivalence relation £, = K,
on the set {E, E,,---,E,}. Note E;= F,; if and only if S;= S; where
S, is the socle of E; for each 1. Choose one representative from each
equivalence class and let P be their direct sum. Then we easily see
that P is a finitely generated, projective, faithful, left A-module.
Let B = End, (P). Then by Morita and Curtis’ result, B is a quasi-
Frobenius ring and P is a finitely generated, projective, faithful, left
B-module. We claim that if we show B/Rad (B) is the product of a
finite number of fields then it will follow that B is Frobenius. For
in this case B/Rad (B) is the direct sum of a finite number of simple
pair-wise nonisomorphic left B-modules. But since B is quasi-F'robenius
each simple left B-module is isomorphic to a submodule of B [2, p.
401, Corollary 58.13]. But to show B/Rad (B) is a product of fields we
only need note that B/Rad (B) = End, (T') where T is the socle of P.
But by the construction of P, T is the direct sum of a finite number
of pair-wise nonisomorphic simple left A-modules so End, (7) is the
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product of a finite number of fields. But now as remarked above,
A = End, (P) and P is a finitely generated, projective, faithful, left
B-module.

Now suppose A = End, (P’) where B’ is a Frobenius ring with
B’/Rad (B’) the product of a finite number of fields and that P’ is a
finitely generated, projective, faithful, left B’-module. Then P’ is a
finitely generated, projective, faithful, left A-module and B’=End , (P’).
But then since A is quasi-Frobenius, P’ = @, E,, where 1 <k, < n
for each ¢ =1,2, ..., m [2, p. 401, Corollary 58.13]. But P’ is a
faithful left A-module so it’s easy to see that for each 7,1 <j < u,
E,, = FE; for some ¢,1 <17 <m. But now if T’ is the socle of P’
(as a left A-module), B’/Rad (B’) = End, (T’). But B’/Rad (B’) is the
product of a finite number of fields so we see that T’ is the direct
sum of a finite number of pair-wise nonisomorphic simple left A-modules.
Thus P = P’ (as left A-modules). But then

B = End,(P) = End, (P)= B and

we easily see that there is a semi-linear isomorphism from the B-module
P to the B’-module P’.

We note that if A is a simple ring (i.e. left Artinian, without
radical and having no nontrivial two sided ideals) we get the usual
representation of A as the ring of matrices over a field (i.e. the endo-
morphism ring of a finite dimensional vector space) since in this case
B is a field.
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