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Defining a function of one variable to be elementary if
it has an explicit representation in terms of a finite number
of algebraic operations, logarithms, and exponentials, Liou-
ville's theorem in its simplest case says that if an algebraic
function has an elementary integral then the latter is itself
an algebraic function plus a sum of constant multiples of
logarithms of algebraic functions. Ostrowski has generalized
Liouville's results to wider classes of meromorphic functions
on regions of the complex plane and J. F. Ritt has given the
classical account of the entire subject in his Integration in
Finite Terms, Columbia University Press, 1948. In spite of
the essentially algebraic nature of the problem, all proofs so
far have been analytic. This paper gives a self contained
purely algebraic exposition of the problem, making a few
new points in addition to the resulting simplicity and
generalization.

A differential ring is a commutative ring R together with a
derivation of R into itself, that is, a map R—+R which, if denoted
xt-*x', satisfies the two rules

(x + y)r = %' + y'
(xy)r = x'y + xy' .

A differential field is a differential ring that is a field.
If u, v are elements of a differential field and v Φ 0 we have the

relation (u/v)' = (v/v — uv')/v2. In a differential ring we have (xn)' =
nxn~ιxf for n = 1, 2, 3, . In particular, setting x = 1, n = 2, we
have Γ = 0. Elements of derivative zero are called constants, and in
a differential field the totality of constants is itself a field, the sub-
field of constants.

If u, v are elements of a differential field such that v Φ 0 and
uf = v'/v, in analogy with the classical situation we say that u is a
logarithm of v or that v is an exponential of u. If, in a certain
differential field, v has a logarithm, then it is necessarily unique to
within an additive constant, while if u has an exponential, the latter
is necessarily unique to within multiplication by a nonzero constant.
A differential extension field of a differential field is said to be
elementary if there exists a finite tower of intermediate differential
fields, starting with the given small field and ending with the given
extension field, such that each field in the tower after the first is
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obtained from its predecessor by the adjunction of a single element
that is a logarithm or an exponential of an element of the preceding
field or algebraic over the proceding field. If we are dealing with
fields of meromorphic functions on a given region of the plane (or
sphere) of the complex variable z, differentiation being the ordinary
d/dz, then elements of elementary differential extension fields of the
differential field C(z) of rational functions of z are called elementary
functions. For example, the trigonometric and inverse trigonometric
functions of z are elementary functions of z, and so are composites
of elementary functions of z, all on suitable domains of definition in
C or on Riemann surfaces.

For the convenience of the reader we include a proof of the
following well-known result.

PROPOSITION. Let F be a differential field of characteristic zero
and K an extension field of F. Then there exists a differential field
structure on K that is compatible with that of F and with the field
structure of K. This differential field structure on K is unique if
K is algebraic over F and in any case induces a differential field
structure on any subfield of K that contains and is algebraic over F.

We have first of all to show that a derivation D on F can be
extended to one on K. If K = F(X), with X transcendental over F,
then the map

Do: F[X] > F[X]

defined by

if α0, al9 , an e F, is a derivation of F[X] extending D. Do can be
extended to a derivation of the quotient field K = F(X) of F[X] by
setting, for u,ve F[X], v Φ 0,

D0(u/v) = ((Dou)v - (D0v)u)/v2 .

Next suppose that K = F(x), with x algebraic over F. Let X be an
indeterminate over F and let f(X) e F[X] be the minimal polynomial
of x over F. The map

3/dX: F[X] > F[X]

defined by

= ±
i=0
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if α0, au •• , α B e ί 1 , is a derivation of F[X] that annuls each element
of F. Thus for any g(X) e F[X] the additive map Do + g(X)d/dX is
a derivation of F[X] that extends Jλ Setting f\X) = (d/dX)f, we
have /'(x) ^ 0, and since F(x) = ,F|>] we can find a particular
flr(X) e F[X] such that

(A/)(s) + 9(x)f'(x) = 0 .

Then Do + g(X)d/dX maps /(X) into a multiple of itself, hence maps
the ideal F[X]f(X) of F[X] into itself, hence induces a derivation
on the factor ring F[X]/F[X]f(X)y which is isomorphic to Fix).
This gives us the desired extension of ΰ to K = Fix). Thus D can
be extended to a derivation of any simple extension field of F. That
D can be extended to a derivation of an arbitrary extension field of
F is an immediate consequence of Zorn's lemma. To complete the
proof it suffices to show that if A and D2 are two derivations of the
field K that agree on the subfield F and xe K is algebraic over F
then DLx = D2x. Passing to the derivation Dι — D2 of K, we have to
show that any derivation of K which annuls all of F also annuls each
xeK that is algebraic over F. This is done by noting that if
fiX) e i^[X] is the minimal polynomial of x over F then we have
0 = (f(χ)γ = /'(&).&', so that x' = 0.

The following result is the meat of this paper.

LEMMA. Let F be a differential field of characteristic zero, Fit)
a differential extension field of F with the same field of constants
and with t transcendental over F and either V e F or t'/t e F. Let
clf -, cn e F be linearly independent over the rational numbers Q
and let uϊy , un be nonzero elements of Fit), v e Fit). Then if

Σ i — + *>' e F[t]
U

we have v e F[t] and, in the case V e F, each u{ e F, while in the
case V\t € F, for each i = 1, , n we have Ui/tUi e F for some integer

In a suitable finite normal algebraic extension field K of F the
quantities ul3 ---,un,v will split into linear factors, so that we can
write

= Σ K
i

- z3γ^ , i = 1, .. , n

it - ZjY + (element of K[t]) ,

where j ranges over a finite set of positive integers, v ranges over a
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finite set of negative integers, each μid is an integer, and each
giy zd, hvd e K. Of course each g{ is nonzero. We work in the differential
extension field K(t) of F(t). if is a differential subfield, K[t] a
differential subring of K(t). By assumption we have

(*) Σ ^ + Σ c i μ i j

 v ~ z'j + Σ ( M * - zjyγeK[t].
ί = l Qi i,3 t — Zj 3,»

The idea of the following proof is, roughly speaking, that when we
express the various functions appearing here as quotients of poly-
nominals in t we get no cancellation, and when we bring the various
terms together we still get no cancellation, so that all the hvj

9s and
all the μid'& (except those corresponding to zd = 0) vanish.

We have either V = a or V — at, for some ae F. In the former
case,

V - z'd = a - z'd
t — Zj t — Zj

Here a — z)e K, and we claim that the last fraction is in lowest terms;
that is, we claim that a — zf

ά Φ 0. To see this, note that by the
unicity part of the proposition, differentiation commutes with each
F-automorphism of K, so that if a = zf

ό then for each σ e Aut (K/F)
we have a = (σzj)', so that [K: F]a = (Σ* ^Zj)\ Hence a = b\ for
some b e F, giving (t — by = 0, or t — b a constant. Since each con-
stant of F(t) is in F, we get teF,& contradiction. Thus a — z]• Φ 0.
In the case V = at we have

V - z't __ at - z\
t — Zj t — Zj

and we claim that also this fraction is in lowest terms, provided
Zj Φ 0. For if the fraction were not in lowest terms we would have
Zj = aZj, so ZJ/ZJ = α, so (σzdy/σzd = a for each σ e Aut (K/F). There-
fore

[K: F]a = Σ - ^ - - (Π σzλΊu σz, .

o OZj \ o / / a

Thus Na = 676, where N = [K: F] and 6 e F, b Φ 0. Hence

(tNy/tN = Nt'lt = Na = 676 ,

giving (^v/&)' = 0, so tN/b e F, a contradiction. Thus in all cases but
one, the fraction (£' — «J)/(̂  — ^i) * s i n lowest terms, a nonzero linear
expression in t divided by t — zd; the exceptional case occurs when
ί'/ί G F and ^ = 0, where (V - z$)/(* - «i) = ί'/ί e ^
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Now

(Ks(t - zsyγ = κό{t - zόy + vhvj(t - zsy-\t' - z'ό).

By what has been done above, except in the one exceptional case, if
hvj Φ 0 we have here an expression which in lowest terms has a non-
zero linear numerator and a denominator (t — zό)~VJrl (of degree
— v + 1 > 1). In the exceptional case t'jt — aeF, zά — 0, we have

and we claim that if hvά Φ 0 then also h'uj + vhvμ Φ 0. For from the
equation h'vά\hvj — — va we would get (oh^)fl{ahvj) = — va for each
σ e Aut (K/F), and hence

-[K: F]va - Σ (σh^γ/iσh^) = [RaKA / Π σhui ,

or -Nva = b'/b, with iV = [K: F] and beF,bΦ 0, so that

so that (t~Nv/b)f = 0, giving, as before, ί-^/δ G ^ a contradiction.
Thus in the exceptional case (huj(t — ZjY)' in lowest terms has denomi-
nator t~v (of degree — v > 0). If now we had some hvj Φ 0, then the
various terms of the left-hand side of (*) would not cancel, and they
could not possibly add up to a polynomial in t. Thus all hvj's are
zero, giving v e K[t]. Hence v e K[t] n F(t) = F[t\.

We are left with

*,i

We have seen that, except in the exceptional case, each (V — z'ό)l(t — zs)
is already in lowest terms, a fraction with denominator t — zd. For
cancellation to take place we must have each Σ< c ^ ϋ — 0. By the
linear independence of cu •••, cΛ over Q we must have each μiά = 0.
Allowing for the exceptional case, there are integers vu * ,vn (all
zero in case V e F, and equal to the integer μiά corresponding to z3- = 0
in the case t'/t e F) such that ujtvi e K. Hence ujt^ e K Π F(t) = F.
This completes the proof of the lemma.

The classical result of Liouville and its generalization by Ostrowski
are contained in the following statement.

THEOREM. Let F be a differential field of characteristic zero,
ae F. If the equation y' ~ a has a solution in some elementary
differential extension field of F having the same sub field of constants,
then there exist constants cu , cne F and elements ul9 , un, v e F
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such that

By assumption there is a tower of differential fields

F=Foc:F1(z---czFN,

all having the same constant field, such that aeF'N and for each
i = 1, , N, Fi = F^iti), where tt is a logarithm or an exponential of
an element of Ft_19 or algebraic over Fi_l9 The proof is by induction
on N, the case N = 0 being trivial. If N > 0, we can apply the
induction assumption to the same a and the tower Fι(zF2a - - - aFN

to get

where now c19 , cn are, as desired, constants in F, but iίΊ, , un9 v
are in Flm Writing tλ = t, we have Fx = i^(έ), where ί is a logarithm
or an exponential of an element of F, or algebraic over F, and the
above equation holds with constants cl9 , cn and elements u19 , un9 v
in F(t). We want to modify n9 c19 , cn9 u19 , un9 v in such a man-
ner that the same equation holds and we have the stronger relations
Mi, ', un, v e F. First suppose that cu , cn are linearly dependent
over Q, for example that we have a relation

cn = (m^j. + + mn_γcn

with m ly , mn_19 m integers and m Φ 0. For i = 1, , n — 1 we
can replace each u{ by nf and Ci by ĉ /m to get the same situation
as before, but cn = m^ + + mn_1cn_1. Thus

a = c^u'Ju, + mγu'nlun) + . -. + ̂ ( w L / % . ^ + m^u'juj + i/

= cάuwy/iuw) + + ̂ ^(^^^--OVK-i^?11-1) + v',

and we have the same situation as before with smaller n. Thus we
may suppose that c19 c29 •••, cn are linearly independent over Q. If t
is a logarithm of an element of F we have V — afja, for some ae F.
If t is transcendental over .F7 the lemma is applicable, and we get
that each u{ e F9 while v e F[t], We also have v' e F9 and we shall
be done in the present case if we can show that v e F[t]9 v

f e F toge-
ther imply that v = ct + d9 for some constant ce F and some element
deF. To do this, write

m

v = Σ hi1,
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where each bά e F and assume, as we may, that m > 0, bm Φ 0. Then

a

+ (element of F[t] of degree < m — 1) .

Since v' e F, we get b'm = 0, so 6m is a constant, and if m > 1 we get
mbmafja + δ'm_ι — 0, that is (m&m£ + bm_x)

f = 0, so that m6wί + &m_! e JF7,
contradicting the transcendency of t over F; thus m = 1 and the
present case is done. In the next case t is an exponential of an
element of F, so that we have t'/t — a', for some a e F. If t is trans-
cendental over F, the lemma says that each u{ is of the form u{ =
α^y% with a{eF and ^ an integer, and that v e F[t]. Since

we have

α = Σ c < ί ί + (t; + (i; 1+ . . . + vn)a)f ,

so that we can assume that each u. L e F. Then vf e F, and it will suffice
to show that v e F. Again writing

m

v = Σ 6^ ,
i=0

with each bά e F and bm Φ 0, we have

m

v' = Σ % + Jb3a')P .
3=0

If m Φ 0 we have 6^ + m6mα' = 0, so that b'Jbm + mt'jt = 0, or
(bmtmy = 0, giving δmίm G JP, which is impossible. This disposes of all
cases where Fι = F(ί) is transcendental over F. In the final case, F1

algebraic over F, let K be the smallest normal algebraic extension
field of F that contains Fλ. For any σ e Aut (iί/jP) we have

so that

[K: F]a = Σ * Σ ^ ~ + Σ (σv)' = Σ ciX*-—L + ^Σ σv^
a

Dividing both sides by [K: F] and noting that I L σuι and Σ * ^^ a r e

in F completes the proof.
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EXAMPLE. AS a further illustration of the utility of the lemma,
let us consider which functions f(z)e9{z) of a complex variable z have
elementary integrals, if / and g are rational functions of z, f being
nonzero and g being nonconstant. Writing eg = t, we start with the
differential field C(z, t), in which C is the constant field and z' — 1,
t' = g't. If feg has an elementary integral then we can write

with cx, •• ,c Λ eC, and uu , un, v e C(z, t). Now t is transcendental
over C(z), as can be seen either analytically, or also algebraically,
noting that if t is contained in a finite normal algebraic extension
field F of C(z) then (σt)'fσt = #' for each σ e Aut (F/C(z)), so

[F: C(s)]flr' - Σ ( W * ) = (il ^Y/π σt ,

so that for some nonconstant u e C(«) we have w'/w the derivative of
an element of C(z), contrary to the fact that all the poles of u'/u,
are of order one. Assuming, as we may (by an argument occurring
in the proof of the theorem), that c19 * ,cn are linearly independent
over Q, we apply the lemma to the differential fields C(z) c C(z, t),
getting that v e C(z)[t] and each u{ is the product of an element of
C(z) with a power of t. Hence

ft = v' + (element of C(z)) ,

with veC(z)[t]. Writing

with 60, , bm 6 C(«), bm Φ 0, we get

If i, 6y ^ 0, we also have 6J + jbάg
f Φ 0, since otherwise gf would

have all its poles of order one, which is imposible. Thus m = 1, and
setting bx — a we get / = a! + ag\ Conversely if there exists an
a e C(z) such that / = a' + ag' then /βα has an elementary integral,
namely ae9. Thus we get the necessary and sufficient condition, due
to Liouville himself, that \feg be elementary, if f,geC(z),fΦθ,
g$C: there must exist a e C(z) such that / = o! + ag'. The same
result holds, with the same argument, if C(z) is replaced by any
algebraic extension field of C(z).
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The classic integrals \ez2dz, \(e'/z)dz are not elementary, for they
give rise to the equations 1 = α' + 2za and 1/z — α' + a, neither of
which has a solution a e C(z), as one sees by looking at the partial
fraction expression for a.
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