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Spector first constructed a function h whose degree of
recursive unsolvability is minimal—that is to say that any
function recursive in h is either recursive or of the same
degree as h. Define a set Q of degrees to be an initial segment
of the upper semi-lattice of degrees of unsolvability if

αeζ> Λ & < α.->. beQ .

Specter's result can then be interpreted as saying that a
certain partially ordered set occurs as an initial segment of
the degrees; it was conjectured that the same is true for
every finite partially ordered set which has a least member.
Sacks then constructed two minimal degrees a and b such
that a U b has a, b, 0 as its only predecessors.

In this paper their methods are extended to obtain the
following result. Let T be the upper semi-lattice of all finite
subsets of N. Then T can be embedded as an initial segment
of the degrees. From this it follows that any finite partial
ordering which can be embedded as an initial segment of
P{B) (the power set of B), with B finite, can also be embedded
as an initial segment of the degrees.

We will define a function h containing a countable infinity of

functions hi9 each of minimal degree, such that hh U hiz U U hit

will represent the finite subset {i19 •••,%} of N.

We first define a recursive function φ as follows: Let ψ(k) =

(μn)((n + l)((n + 1) + l)/2) > k so that

1 ) ^ j

and define φ(k) = k — (ψ(k)(ψ(k) + l))/2. Then φ(k) takes on suc-

cessively the values

0,0,1,0,1,2,0,1,2,3, . . . , rc , 0,1,2, ...,n,n + 1,0, ••• .

We will want to arrange things so that in the k'ih interval of
g, the φ(kyth function (carried on the powers of Pφ(k)) will be the
only one for which / 0 and / x have different values. (The reader who
finds this sentence mysterious is encouraged to read the next few
definitions and then return to this remark.)

Let Pi be the ί 'th prime, and define recursive predicates P{ and
P as follows:

Pi(x) = x = p[xH

P(x) = (
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Thus P(x) if and only if x is a prime-power.
A triple (/0, fu g) of functions is special if:
( i ) (*),<«(«)[/«(*) = 0 V A(t) = 1]
(ii) g(0) = 0A(n)[g(n)<g(n + l)]
(iii) ~P(χ)->fo(χ)=fι(χ) = O

(n)[(Ex){g(n + 1)
(IV)

^ < * + 2)Λ4,W
(z){g(n + 1) ^ s < g(n + 2) A

If (fo,fi,g) satisfies (i), (ii), and (iii) then we define F(fϋyfug)
as follows:

h e F(f0, Λ, g) = (n)(Si)ί<2(ίc)[flf(n) ^x<g(n+l) .-*. Λ(a?) = /,(&)] .

If (fo,fug) a n d (u^u^v) are special triples, then we say that
(uOJulyv) is a contraction of (fo,fi,g) if:

( i ) u0, ^ 6 F ( / o , / 1 ? flr)

(ii) (/^ί)Wέ) Φ u{(t)) > (μt)(fo(t) Φ fx{t))
(iii) (n)(Em)[v(n) = g(m)].
If F(fo,fu g) is defined, then we define F*(fo,f19g) to be the

set of all initial segments of members of F(fo,fug)—that is,

A (m)g{m)<lhs(Ei)i<2(x)[g(m) ^x< g(m + 1) .->. (s)x = Ux)] .

L E M M A 1. Let (/0, f19 g) be a special triple and let s e F*(fQi fu g).

Then there is a special triple (uQ, uu v) such that:

( i ) (u0, ul9 v) is a contraction of (/0, fu g)

( i i ) uQ, ulf v are recursive in fQ,f19 g

(iii) v(l) > Ihs

(iv) (x)x<ιh8(u0(x) = uλ{x) = (s)x).

Proof. Let m be such that g(m) = Ihs. Define ^(0) = 0, v(l) =
g(m + 2), uo(x) = uλ(x) = (s)x for x < lhsy and wo(a?) = u^x) = /0(a?) for
Ihs <,x < g(m + 2).

Suppose now that v(w + 1) is defined; we show how to define
v(n + 2) and u^x) for i;(w + 1) ^ a; < v(rt + 2). Let m* be such that
g(m*) = v(w + 1) and let r* be such that

r* = (μr)(φ(r) = (̂w) A r + 1 ^ m*) .

Then define v(n + 2) = g(r* + 2). We also define u^t) for v(w + 1) ^
ί < v(n + 2) as follows:

u>i(t) = /o(<) for v(n + 1) ^ t < <?(r* + 1)

^ ( 0 = fi(t) for ^(r* + 1) ^ ί < v(n + 2) .
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It is clear that the triple (uQ, uu v) is special and has the properties

(i)-(iv).

Let 0 rg α0 < &i < α2 < < αA;_1 be a finite sequence of integers
and let h be any function whose range is {0,1}. We define haQ...ajc_1

as follows:

K'-k-fr) = ° i f ~(p*o(χ) V V Pakjχ))
= HX) if PaQ(x) V V PaUX)

Where there is no danger of ambiguity we will abbreviate haQ...a]c_ί

to h_. We also use the convention that x0, , xj9 , xr means

We construct a function h so that for each j , the function /^
is of minimal degree. The degree h5 will correspond to the finite set
{j}. We see that hao U U hak^ = fk^..^^ so we will assign K0...ak^
to be the degree corresponding to the set {α0, •• ,αfc_1}. Let A be a
finite subset of N, and let Au , At be all sets obtained by deleting
one element from A. The lemma below is concerned with guaranteeing
the degree analog of the following statement: If B ^ A, then either
B = A or for some j , B <̂  A, .

Note that if {α0, . , α ^ } = 9, then h^...^ = 0.

LEMMA 2β Lβί (fo9f19g) be a special triple and let e and 0 ^
α0 < aι < < αfc_! be given. Then there is a special triple (u0, uu v)
such that:

( i ) (u0, UL, V) is a contraction of (fQ, flt g)
(ii) u0, uu v are recursive in f0, fu g
(iii) if h e F(u0, u19 v) then either

(A) {e}h-(n) is undefined for some n

or

(Bj) {e}h-(n) is recursive in fcαo...£i...αΛ_1, fo, /1, g

for some j , 0 ^ j ^ k — 1

or

(C) h_ is recursive in {e}h-, fQ, fu g .

Proof. Consider F(fo_, /!_, g), which is precisely

{hao...ak_l\heF(fO9fl9g)}9

and denote F*(/o_, f_, g) by F*.



166 JOSEPH G. ROSENSTEIN

Case 1.

(Es)(En)(w)[s e F* A (w e î 7* A w ext s .->. {β}w(w) is undefined)] .

Let s0, w0 be the least pair satisfying the case hypothesis. Let

s = (μw)(w e F*(fQ, fu g) A lh w = lhs0

A (»)x<l*.0(Pα0(») V * * * V *>«*_» . - • (W)x = (So),))

Apply Lemma 1 to get a special triple (w0, ^ , v) satisfying (i) and
(ii). We need only show that (uQ, u19 v) also satisfies (iii) (A).

But if h e F(u0, uu v) and {e}h-(n0) is defined, then there is an
initial segment w of h_ such that {e}w(n0) is defined. But s is an
initial segment of h; and if w ext s0 then {e}w(nQ) is undefined and
if s0 ext w then {β}s°(π0) is defined. Both of these are impossible.
Hence {e}h-(n0) is undefined.

Case 23 . The hypothesis of Case 1 is false and in addition:

(Es)(n)(u)(v)[s e F* A {̂  e ί7* A ^ e JP7* A ^ = ^ v

A {e}n(n) is defined A ^ e χ t s

A ίe}ϋ(^) is defined A v e x t s

A (χ)ik.s*<ιUPaQ(χ) V V Λ,(^) V V Pah-X(
χ)

.—. (%)β = (v)β)} — Mw(π) = {e}-(n)] .

This hypothesis will be referred to as statement (j).
Let s0 be the least s satisfying the statement (j), where j is the

smallest i such that statement (i) holds. Let

s = (μw)(w e F*(f0, fu g) J^lh w = lhsσ

A (x)x<lhsQ(PaQ(x) V V Pak^(x) • — (W)x = (So),) .

Apply Lemma 1 to get a special triple (u0, uu v) satisfying (i) and (ii).
We show that (uQ, uu v) also satisfies (iii) (B3).

So let h e F(u0, u19 v) be such that {e}h-{ri) is defined for all n.
Then s0 must be an initial segment of h_. We show how to compute
{e}h-(n) from /0, flf g, haQ..^....ak^.

Now since {e}h-(n) is defined, h_ e F(fo__, /x_, g), and the hypothesis
of Case 1 is false, there is a weF* such that w ext s0 ^ {e}w(n) is
defined and

(x)iH.s*<ιUPao(x) V V Paj(x) V V i V / s ) •-. (w)x - h(x)) .

One can easily find such a w by examining sufficiently large segments
of /o, /i, flf, and K(i...£Γ.ak__1. We claim that {β}w;(^) = {eγ-(n). Indeed,
if v is an initial segment of A_ such that veF* A v ext sQ A {e}υ(n)
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is defined A Mϋ(^) = M*-(w), then {e}v(n) = {e}w(n) by statement (j).
Hence {e}w(n) = {e}h~(n) and so we have computed {e}h~(n) from
fo,fi,g,hao...£j.:ak_1; thus {e}h- is recursive in these functions.

Case 3. Case 1 and Case 2, are false for all j . We claim that
for each i, 0 ^ j ^ ί; - 1, following statement (j') holds:

(s)(y)(En)(Eu)(Ew)[s z F* J\y zF* J\lhs = Ihy

—*{u€ JF7* A W e F* A u e χ t s A w e χ t 2/
A {e}u(n) is defined A {e}w(n) is defined A ^ ^ = ^ w

A {β}«(n) * {e}»(tt) A ( ^ . ^ ^ ( P ^ * ) V * * V

Paj(x) V V P « Λ - » .->• M , - (w)x)}] .

To prove (i') suppose s,yeF*. Since statement (i) is false
there is an n, a v! and a u" such that u', t&" e F* and £/m' = Ihu"
and {β}w'(w) is defined and {e}u"(n) is defined and ur extends s and tt"
extends s and {e}w'(̂ ) ^ {e}u"(n) and

Let y' be defined by (y')x = (?/),, for x < ί/tτ/ and (ί/')* = OO* f o r

^ x < ϊittt'. Then since Case 1 is false there is a w such that
w e F* and w extends T/' and {e}w(̂ ) is defined. Now either {e}u'{n)
or {e}u"(n) is different from {e}w(n); suppose without loss of generality
that the first one is. Define u by (u)x = {u')x for x < Ihu' and (u)x —
(w)s for Ihu' ^ x < Ihw. Then n, u, and w have the properties
described in statement (jf).

We will use the truth of these statements (/) to define uo,uu

and v.
Let m* = (μn)(fQ(n) Φ fL(n))m Let v(0) = 0, v(l) = g{m* + 1), and

Ui(m) — Mm) when m < v(l). Fixί ^ 0 and suppose that v{m) has
been defined for ra <; ί + 1, that v(0) < v(l) < < v(t + 1), and
that Wi(m) has been defined for all m < v(t + 1). We shall define
v(ί + 2) and u^m) for v(ί + 1) ^ m < v(ί + 2).

We must first examine t to decide which of the infinite number
of functions should be the one varying in this interval. If φ(t) — aό

for some j we shall use statement (jf); if φ(t) Φ aό for all j we shall
use statement (0').

For each i <̂  2ί+1 we define a pair (xif y^ of partial functions
with finite domains. Let x0 and y0 be the partial functions whose
domain is empty. Fix i so that 0 < i <, 2t+1 and suppose that (#*_!, y^)
has been defined. Let i = co2° + c^1 + . . . + ct+12

t+1 where each c3- is
either 0 or 1. We assume that domain of Xi_t — domain of y^ =
{m I v(t + 1) ^ m < 2} where s = g(r) for some r.
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We define two initial segments, s and y:

s(m) = y(m) = ua_(m) if v(j) ^ m < v(j + 1), cό = α, and j ^

s(m) = ^_!(m) if i;(£ + 1) <; m < 2

y(m) = Vi^im) if v ( ί + 1) ^ m < 2. T h e n s,y e F* .

Hence by the appropriate assumption (jf) there is a natural number
n and segments w, w such that s, 2/, w, %, w have the properties
described in statement (j')m Choose these minimal. Define Xi(m) =
u(m) and Vi(m) = w(m) for all m such that v(t + 1) ^ m < £/m. The
assumptions we made concerning x^ and y^ remain true when i — 1
is replaced by i. We thus proceed to get xt* and 2/t* where ί* = 2ί+1.

Let m0 be such that <7(m0) = v(t + 1) + (cardinality of domain of
xt*), and let r0 = (μr)(φ(r) = ^(ί) A #( r + 1) ^ ^(^0)) and define
v(t + 2) = flf(r0 + 2).

If ^(ί) = ad, then we want variation in the α/th function in this
interval, so define

^o(m) = {(μs)(s e ί7*(/o, / „ g) A ΪΛs = flf(m0) A

(α),(t + l)£*<ΪΛβ(Pβo(&) V V Pak^(X) •"""• (S)- = (^tOJIm ,

and ^(m) to be the same except that yt* replaces xt*, for all m such
that v(t + 1) ^ m < g(m0). Furthermore, for £/(m0) ^ m < ^(r0 + 1),
let uo(m) = ^(m) = /0(m); and for g(r0 + 1) ^ m < ^(r0 + 2), let

( ) f ( )
If ^(ί) 7̂  α̂  for any j , then we want one of the other functions

to vary on this interval, so we define u0 and ut exactly as above
except that for v(t + 1) <J m < g(m0), both %0(m) and ^(m) are equal
to the expression with xt*.

The assumptions we made concerning the values of u^m) for
m < v(t + 1) and ΐ < 2 remain true when t + 1 is replaced by t + 2.
We thus proceed to get functions u0, u19 v such that (u0, u19 v) is
clearly a special triple and satisfies (i).

We need only show that (u0, uly v) satisfies (ii) and (iii) (C). As
for the first, we must show that at each stage of the construction
of uO9u19v the choices made are made recursively in f0, fl9 g and that
this is done uniformly (with respect to the stages.) The latter is
clear since what is done between v(n + 1) and v(n + 2) depends only
on φ(ri). As to the former, we choose, for given s and y, an n, a u,
and a v according to statement (/)• We show that this is done
recursively in f09 f19 g. Indeed (jf) can be written in the form
(s)(y)(En)(Eu)(Ew)(Ey')(Ey")Q(s, y, n, u, w, y\ y") where y' and y" are
to be considered as Godel numbers of computations for {e}u(n) and
{e}w(n) and the predicate Q is recursive in f09 f19 g. To make our
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choice we look successively at quintuples (n, u, w, yf, y") until we find
one that works. Thus with the stipulation that where we said above
"choose n,u,w minimal" we meant "choose n,u,w so that (n,u,w,y',y")
is minimal/' it is clear that uOy uu v are recursive in /0, f, g.

To show that (iii) (C) holds, we suppose that heF(uO9u19v) and
that {e}h-(m) is defined for all m. We must show that h_ is recursive
in /0, fίy g, {e}h~. Fix t ^ 0. We indicate how to obtain the values of
hJjYi) for v(t + 1) ^ m < v(t + 2) from /0, /1? #, {β}71-, and the values
of hΛm) for m < v(t + 1). Note that the values of hjm) for m < v(l)
are obtained quite easily from fQ, f, and g.

Now since & e F{u^ uu v) it follows that for each j < t + 1 there
is an α such that (m)(v(j) <£ m < v(i + 1) .—>. fe_(m) = Mα_(m)). For
each i, let cό be the least α for which this holds. Let i = 2ί+1 if
U)U < t + 1 .->. cy = 0) and otherwise let i = co2° + c,2l + . . . + ct2\

Consider now the definition of α̂  and y{ in Case 3. Clearly s(m) =
y(m) — h_(m) for m < v(t + 1). Also {β}ίί(w) and {e}w(n) are defined
and are unequal, and u,w, and ^ can be computed from f0, f19 g and
the values of h_(m) for m < v(t + 1); this is so because Q is recursive.
Now either u or w is an initial segment of h_, and knowing which
one determines what h__{m) is on all of the interval v(ί + 1) ^
m < v(t + 2); but {e}7'-^) can be only one of {e}u(n) and {e}w(?2<), so
that knowing {e}h~ determines what Λ_ is on the interval.

This completes the proof of Lemma 2.

THEOREM. Let T be the upper semi-lattice of finite subsets of
N. Then T can be embedded as an initial segment in the upper
semi-lattice of degrees of recursive unsolvability.

Proof. If {aQ < aL < < αA;_1} is a finite subset of N then we
shall have haQ...ak__1 correspond to it, where h is the function we are
about to construct. Thus in particular 0 will correspond to φ. In
order that this be an embedding of the finite subsets of N as an
initial segment of the degrees it is necessary and sufficient that:

( i ) if {aQ, , ak_^) and {b0, , 6^} are distinct sets, then

(ii) if {α0? •• ,αΛ_1} is included in {δ0, •• ,6r__1}, then h^..^^ ^

(iii) if d < /&αo...αA_1, then for some i , 0 ^ i ^ k — 1, we have
d ^ fcαo .ffi

Λ

i...α,_1.
Note that (i) includes the statement that hζ is not recursive, and

together with (iii) implies that h{ is of minimal degree. Note too
that we need do nothing to guarantee that (ii) holds; it follows from
the definition of haQ...ak_im

We define a sequence (/o

α, /o

α, ga) of special triples, each a con-
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traction of (or equal to) the preceding one, such that for each
a, foa, fiy and g" are recursive.

Indeed define /0°, ff, g° as follows:

ff°(0) - 0 g\l) = 1

g\n + 2) = (μt)(Er)[t = pr

φ{n) + 1 A 9°(n + 1 ) < ί]

fS(m) = 0 for all m

fϊ(m) = 1 if g\n + 1) ^ m < g(n + 2) A (#r)(m = j>5ln))

= 0 otherwise .

Then clearly (/0°, ff, g°) is a special triple and /0°, Λ
0, and #° are recursive

functions.
We proceed inductively as follows:

Case 1. a + 1 is not of the form 2eSΛ5BT, where A and 5 repre-
sent {α0, , αA_!} and {δ0, , 6r_:} in some standard coding,
aύ < < αΛ_!, 60 < < &r-i, a n ( i ^ < 2. In this case we set
/o α + 1 = /oα, / i α + 1 = /iα, a n d g"*1 = g".

Case 2. The hypothesis of Case 1 is false and t — 0. In this
case we want to guarantee that if {α0, , αA._1} is not included in
{δ0, •••> δr-i}, then h^...^^ is not recursive in hhQ.,.hr_ι with Godel
number e. Of course if {α0, , α ^ } is included in {b0, , 6r_!}, then
we do not want to do this (good thing—we can't) so we proceed as
in Case 1.

Let j be minimal such that a3r g {b0, , δ r_J; we will use the fact
that (foa,ff,9a) is a special triple to find an interval in which the
α/th function varies but for each i the bi'ϊh function does not; we
then compute a value for {e}h-(pi) (where _ of course stands for
b0 6r_i) and choose for h(pl) the opposite value. The end result
is that for each heF(f£+1,ffc+1

fg
0C+1),ha. is not recursive in hbQ...br_t

with Godel number e. Once this has been done for every β, we
conclude that haQ...ak_l is not recursive in hbQ...br_i9 for ha. is recursive
in Λβ0...αJfe_1 but not in hho...br_im

To do this we let

n0 = (μn)(Em)[ga(m + 1) ^ n < ga{m + 2) A (Et)(n = p^m)) A

a3- = φ(m) A foa(n) Φ /?(%)]

n0 exists since (/o

α, /f, ^α) is a special triple.

Subcase 1. ~(#w)l> e JF7*(/0

β, /iα, flfα) A M 1 0 - ^ ) is defined]. In
this case let s be defined by s(m) = /o

α(m) for 0 ^ m < ^α(2) and use
Lemma 1 to get a special triple (fo

a+\ fι+\ ga+1) satisfying the induction
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requirements. Note particularly, here and in the subsequent cases,
that since these functions are recursive in fo

a, ft, ga which are assumed
to be recursive, we have that fo

a+\ ft+\ ga+ί are recursive.

Subcase 2. (Ew)[w e F*{fo

a, ft, ga) A MW~(O is defined]. Let v
be the least such w and let

ΐ0 = (μt)[t G F*(ft, ft, ga) Λ Iht > n0 A Iht ^ Ihv A

(ί)wo Φ {eγ-(n0) A (x)^<ιhυ(Pφ) V V Λ r _ » .-• (ί). = (v)x)] .

Now apply Lemma 1 with t0 as the initial segment to obtain
/ fa + l fa + l na + ί\
l/o t Ji 19 )•

Case 3. The hypothesis of Case 1 is false and t = 1. In this
case we wish to guarantee that if d is recursive in hao...ajc_1 with
Godel number e, then either haQ...afc_l is recursive in d or d is recursive
in some /&αo...ii...αj5._1. But to do this we need only apply Lemma 2 with
e and α0, •• ,α&_1? to get (/o

α+1, ft+\ ga+1). (Note the role that the
recursiveness of /o

α, ft, and ^α play here.)

This is the end of the construction. It is clear that there is
exactly one function h in the intersection of the sequence of special
triples and that this function has exactly the properties we want.
The enterprising soul will see that in fact we have embedded T in
the set of degrees <Ξ 0".

COROLLARY. If B is finite, then P(B) and any initial segment
of P(B) is embeddable as an initial segment in the upper semi-
lattice of degrees of unsolvability.

(This result has been obtained independently by J. Shoenfield.)

I expect that any finite partially ordered set with a least element
can be embedded as an initial segment of the degrees and that this
can be shown using methods not much more complicated than these.
Indeed, at first glance, or even second glance, it might seem that
slight modifications of the above construction give a proof of the
conjecture. This is not so; indeed, technical difficulties appear out
of nowhere, and they even make it impossible to construct a degree
which is greater than exactly three distinct minimal degrees, and
nothing else except 0. It remains to be seen whether these technical
difficulties are really essential difficulties, or whether some simple
trick will enable them to disappear.
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