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Normal and separable algebraic extensions of abelian
groups have been defined in a manner similar to that of the
field theory., In this paper it is shown that if N is a normal
algebraic extension of the torsion group K = > K,, where
the p-components K, of K are cyclic or divisible, and if G is
the group of K-automorphisms of N, then there is a family
{Gg}pex of subgroups of G such that {G, {Gglrex, N} is a field
formation,

All groups mentioned are abelian. If K is a subgroup of E,
then A, (F) denotes the group of K-automorphisms of E. If S is a
subgroup of the automorphism group A(E) of E, then Ef is the
subgroup of E fixed by S. FE is an algebraic extension of K if every
¢c E satisfies an equation ne =k # 0, k¢ K. E is a normal extension
of K in an algebraic closure D of (minimal divisible group containing)
K if every K-automorphism of D induces an automorphism of E and
E is a separable extension of K if for every ec K, e¢ K, there is a
o¢ Ax(D) such that ¢ = g(¢) ¢ E. A formation is a field formation
[1] if it satisfies:

Axiom I. For each Galois extension F/E,
H\F|E) = H(Gy/Gz, F) = 0.

The following are proved in [6]:

I (THEOREM 8). Let N be a normal and separable extension of
K wn D and let E(#N) be an extension of K inm N. E is a normal
extenston of K if and only if Ax(N) is a normal subgroup of A (N)
and then

Ag(E) = Axg(N)/AxN) .

II (THEOREM 11). If G’ is a closed subgroup of G (in the topology
defined below) and E = N¥, then G' = Ayx(N).

We now state the

IIT THEOREM. Let K = >, K, be a torsion group such that K, is
divisible or trivial and for a prime p = 8, K, is divisible or cyclic.
If N is a normal extension of K in an algebraic closure D of K, if
G = Ax(N), and if X is the class of groups E such that K S ES N
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and Gy = Ax(N) 1is of finite index in G, then {G,{Gg}zex, N} s a
field formation.

Proof. Since K is a torsion group, it follows (page 54 of [6])
that N is a separable extension of K. G is the complete direct
product of the groups A (N,) which are abelian, being cyclic if N,
is cyclic or being isomorphic to a subgroup of the multiplicative
group of p-adic units of N, = D, = Z(p~) and K, is cyeclic.

Let &# be the class of groups L such that K< L & N and if
K, is cyclic while N, = D, then L, is cyclic. Topologize G by taking
as a filter base for the neighborhoods of 0 all groups G, = A,(N)
with Le &

Every member of X is in &2 For if Fe X, then by I, G/Gz =
Ag(F) = nAKp(Ep) is a finite group. So E, = K, for almost all primes
p and if E, = K, then E, is cyclic (otherwise A, (E,) is of the power
of the continuum). Hence Ee &~

We have

A. If EF and E’ are in X, then Gz N Gz = Gzip and E + E' is
in X,

B, If FeXand G, S G <G, then @ = G, where B/ = N ¢ X,

Proof of B. G’ is of finite index and is closed in the topology
on G. An application of II completes the proof.

C. TFor Ec X, every conjugate of G, equals G,.

D. For each xe N, I'(z) = {7(x)| v G} is one of the G; with
Ee X,

Proof of D. {K, x}, the group generated by K and z, is in X.
For if v evG,, then '(x) = ¥(x); but there are only finitely many
members of I'(x) since there are only finitely many elements of N
which are not in K and have the same order as . So G, is of
finite index. Also, Gk, S I'(®) & G. So by B, I'(x) is one of the
Gy with Fe X,

Statements A thru D establish that {G, {G:}zex, N} is a formation
[5]. It remains to be proved that if G, S G, for £ and F in X,
then HYF/E) = HY(Ay(F), F) =0. The proof will be established
first for cyclic p-groups (p = 2). The following lemma will facilitate
this proof. The proof of the lemma will be found below,
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LEMMA. If p is an odd prime and M= S (1 + p™)¢, ¢=20,1...,
p*™ — 1, where n > m = 1, then »*™ is an exact divisor of M.

Now let F, by cyclic of order p™ and algebraic over its subgroup
E, of order p™, m = 1. If te Ay (F,) is defined by i(z) = (1 + p™)2,
then ¢ generates A (F,). By Theorem 7.1 of [4],

H(Ag(F,), Fy) = {fe F,| Mf = 0}/{(t — Df|feF,},

where Mf =31+ »™if,1=0,1,.--,p"™ — 1, and (¢t — 1)f = p"f.
From the lemma, Mf =0 implies f= p™f’ for some f’eF,. Thus
HY(Ap (F,), F,) =0, concluding the primary cyclic case.

To complete the proof of the theorem, let & and F' be in X such
that G, S G, i.e., F/E is a Galois extension. Then by Theorem 10.1
of [2]

HF|E), = H(Ap,(F,), F,) =0

for each prime p and therefore HYF/E) =0. {G,{Gulzex, N} is a
field formation.

Proof of lemma (suggested by A.A. Gioia). The series defining
M is geometric so p"M = (1 + p™)*"™™ — 1, By Theorem 4-5 of [3],
p* divides the right hand side of this equation. If p**' also divides
p™M, then Theorem 4-5 of [3]—which requires p # 2—can be applied
again to yield:

1 —[— pm = 1m0d p'nJrl——(n——m)

which is false. The lemma is proved.
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