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In this paper it is proved that every topological lattice
on the two-cell is topologically isomorphic (iseomorphic) to a
sublattice of the product lattice 7 X I, An explicit description
of the compact connected sublattices of I X I containing (0, 0)
and (1,1) is given. These results, together with a theorem
of A, D. Wallace, yield a characterization of all compact
connected lattices in the plane: each is iseomorphic to a
sublattice of I x I,

A topological lattice is a partially ordered space X with the
property that every pair of elements a, b of X has a least upper
bound, @\ b, and a greatest lower bound, a A b, so that the opera-
tions \v/ and A are continuous. A simple example of a topological
lattice is the unit interval I with the usual ordering. The partial
order on the m-cell I* given by (x;) < (y,) if and only if x;, < y, for
1 =1, ..., n is a lattice ordering, in fact, it is the lattice ordering
obtained by regarding I* as a product lattice. L. W. Anderson and
A. D. Wallace have found conditions under which a lattice ordering
on the m-cell is the product order. One can also consider the follow-
ing problem: determine all lattice orderings of the m-cell. It is well
known that the usual order is the only lattice order on the interval.
In this paper the problem is considered for the two-cell. It is shown
that every topological lattice on the two-cell is iseomorphic to a
sublattice of the product lattice I x I. This result together with a
theorem of A. D. Wallace is used to prove that every compact con-
nected lattice in the plane is iseomorphic to a sublattice of I x I.
Finally, an explicit description of the compact connected sublattices
of I x I containing (0, 0) and (1, 1) is given.

1. Lattice orderings of the two-cell. Let L be a topological
lattice whose underlying space is homeomorphic to a two-cell. Since
L is compact, L has a unique minimum element 0 and a unique
maximum element 1. It is known [1] that 0 and 1 lie on the boundary
of L and that the boundary arcs T and E determined by 0 and 1
are maximal chains in L and that T and E generate L in the sense
that L =TV E =T A E. In this section we prove that L is iseo-
morphic to a sublattice of I x I. The proof requires several lemmas.

LemMA 1. Let p,qe L. If (o ATYNT=@ANT)NT, then either
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pANTcgNTorgANTcpANT.

Proof. We first assume that p,qe E and that p < q. If p =0,
then peq A T. Suppose p > 0 and that p¢q A T. It is well known
that p V T and ¢ A T are arcs from p to 1 and from ¢ to 0 respec-
tively. Since L is a 2-cell, it must follow that (p vV T) N (@ A T) == O.
Let ze(p VvV Th)N (@ A T) and let

v=sup{l¢ ANT)NT}=sup{w AT)NT}.

Then z = p \V t for some te T. If ¢t < x, then by the definition of z,
we would have p\VVt = p. Hence ¢ >2x. But now the inequality
t <2< q implies that ¢ At =t € ¢ A T which contradicts the choice
of x.

Now let » and ¢ be arbitrary elements of L and choose ¢, f e F
such that pee A T and ge f A T. This is possible since E A T = L.
If either of p or ¢ is an element of T, then the lemma is trivial.
For suppose pe T. Then

PANT=@@ADTINT=@ANTH)NTcCgANT.

We may now assume that p,q¢ T. We contend that e A T)NT =
ADNT=(FANT)NT=@ANT)NT. To establish the first
equality, let te(e AT)NT. Then since e AT is a chain and
p,tce AN T, either p <tor t<p. Suppose p=<t. Then for some
teT,p=eANt,=€ANt)ANTE=(AN) ANt =t ANt eT, which is a
contradiction, Therefore ¢t < p and te(p A T)NT. Now suppose
te(p ANT)NT. Then t < p=<e implies that te(e A T) N T. This
proves the first equality; the last equality is proved similarly. From
the first part of the proof, we conclude that either e A TC f A T or
fFATceNT. Suppose f ATceANT. Then p AT and ¢ A T are
subchains of ¢ A T, so either p A Tcq AT orgANTcpAT.
Forxe T, we define C,c Eby C, = {h e E|lx=sup{(h AN T)N T}}.

LEMMA 2. The set C, is closed for all xe T.

Proof. We consider the nontrivial case where C, = [J. From
the continuity of A it follows that the set {he E|xeh A T} is closed.
Let ¢ = inf{heE|xech AN T}; then xce’ A T and ¢ < ¢ for all ec C,.
If te(@ AT)NT and t > x, then forec C,, we would have t < ¢’ < ¢
and hence tec(e A T) N T contradicting the fact that ec C,. Hence
x=sup{(¢ AT)NT} and ¢ <cC,.

Let h,eC,,mn=1,2,-.-, and let h,— h. Then ¢ < h, for each
n and by Lemma 1, we have that ¢ A TCh, A T for all values of
n and therefore ¢ N Tch AN T. Let 2’ =sup{(h AN T)N T}. Then
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o' =x sincexe (hAT)NT. We have that ¢/, 2’ ¢ h AT and so one of the
inequalities ' < ¢/, ¢’ < &’ must hold. If a2’ < ¢, then x’c(e A T)NT
which implies that 2’ <« and hence 2’ =« and heC,. If ¢ < 2o,
let ¢ =h At for teT. Then

e =d N =M ANDANT=0OANIYANt=2"NteT.

This involves a contradiction unless ¢’ = 0. However, if ¢’ = 0, then
=0 and h, A T =0 for all values of n; hence w A T = 0and heC,.
This completes the proof of the lemma.

We now define relations 2 and 27" on T as follows: for a,be T,

as”b=ace\N T if and only if bee\/ T for all ec F.
a7'b=ace AN\ T if and only if bee A T for all ec K.

LEMMA 3. The relations 57 and " are closed congruences on T.

Proof. It is easy to see that 5% and ¥ are congruences on T.
We will show that the relation 2" is closed. A dual argument will
show that 57 is closed.

Let a,—a, b, — b with a,, b,e T and a,7°b, for each n. Assume
that a <b. If hee A T for ec E, it follows trivially that ace A T.
Suppose ace A T for ec E. Let x =sup{(e A T)N T}; then a < x.
If @ <, then for n sufficiently large, @, < a and hence a,ce A T.
Since a,7°b, we must have b,ce A T for n sufficiently large and
therefore bee A T. This gives a777b.

We now assume that « = « and let /= supC,. This sup exists
since C, is closed by Lemma 2. If f=1, then a = b = 1. Suppose
f<1 and let f,—f where f,cKE, f,>f for m=1,2, ..., Let
Y = sup{(fn AN T)N T}. Then since f,¢C,, ¥y, > a. Thus for fixed
m, there exists a positive integer N, such that if » = N,, then
a, < Ym, o a,€fn, NT. Therefore b,cf, NT for n <N,. We
conclude that bef, AN T for each positive integer m and hence
befANT. But a=sup{(fANT)NT} and hence b < a. Therefore
a =b.

LEMMA 4. Let ecE and let x =sup{(e AT)NT}, €& = supC,
¢ =nfV, where V, denotes the congruence class modulo 2~ which
contarns x. Then {z|2' <z etce NT.

Proof. If ze T, thenz<x<¢ implies z=¢" ANzece’ AT. Suppose
2¢ T and let fe E such that ze f A T. If f=0,thenz=0¢ce A T.
Suppose f>0. We have 2’ <2< f and therefore 2’c¢f A T and
since ' 7" w,xe fANT. If te(fANT)NT, thente(z A T)N T since
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ATCFATand 2z¢ T. From the inequality ¢ < z < ¢’ we conclude
that te(¢ AT)NT and hence t < x. Hence x =sup{(f A T)N T}
and by Lemma 1 we have f A T cé A T and therefore zee' A T.

LEMMA 5. If e, feE and pe[(fV T)Nn (e AN T)\T, then {p} =
FVITYneANT).

Proof. Suppose p'e(fV T)N(e A T). Then either p' <p or
p’ = p and in either case it is easily seen that p’¢ T since p¢ T.
Assume that p' <p and let z =sup{(e AT)NT}. Then since
p,peT,z=sup {pAT)NT}=sup{®»’ AN T)n T} Sincep’ <p on
fVv T, we have that pep’ vV T so that p = p’ \V ¢ for some te T and
since x =sup{(® A T)N T}, it follows that ¢t = z. But t<p=<e
implies that te(¢e AT)NT and so ¢t <x. Hence ¢t =2 and p =
PV =7p.

LEMMA 6. Let 2T and let ' = sup Ve. Then C, #+ O.

Proof. The set {he E|xeh A T} is closed by the continuity of
A and is nonempty since xe€l A T. Let e=inf{heE|xech A T}.
Then xce A T and since xo 2’ it follows that «’'ee A T. Let ¢ =
sup{(e A T)NT}. Thena” < a'. Suppose hc Eandxeh A T. Then
h = e by the definition of ¢ and since z"ce A T it follows that
a”eh A T. On the other hand, if #"eh A T for some ke E, then
xeh AT since ¢ <2”. Therefore x2r %" but since «” = %' and
¢ = sup ¥  «, we must have 2" = a’. Hence ec(C,..

We are now prepared to define the iseomorphism from L into
I x I. For pe L, define

a(p) =sup{p A T)N T}
and
a(p) =inf{(pVv T)NT}.

Let 7%,,7,, denote the natural maps from T onto T/ = T, and
T/>#7 = T, respectively. Let ¢, = n,oa,, ¢, = 9,0, and define

6:L—T, x T,
by
=06, X ¢y
THEOREM 1. If L s a topological lattice which is homeomorphic
to a 2-cell, then L 1is iseomorphic to a sublattice of I X I.

Proof. We will show that the map defined above is a one-to-one
continuous homomorphism from L into T, x T,. The theorem then
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follows since T, x T, is iseomorphic to I x I.

(i) The map ¢ is continuous. We show ¢, is continuous. A dual
argument shows that ¢, is continuous.

Let e T, and let ¢ =supni*(x). Then C,+# O by Lemma 6.
Let e =sup C,. We claim that ¢;'[0, 2] = e A L. A similar argument
shows that ¢7'[x, 1] = o’ v L where o’ = inf y7(x). Thus the inverse
under ¢, of a subbasic closed set is closed in L and hence «, is
continuous.

Let zee A L. Then b =sup{ZAT)NT}<z2z=¢e and so b =< a.
Then ¢,(2) = n(a,(2)) = 7,(b) < p(a) = . Hence z€ ¢7[0, x]. Now let
ze€¢7'[0, 2], b = sup 97(¢,()), and f = supC,. Since ¢,(2) <z, then
b=<a. If zeT then 2<b<a=<e¢; thus zee A L.

Now suppose that z¢ T. From the definition of b we have 7,(b) =
n(a,(2)) and hence b a,(z). Therefore a,(z) < b. Let h € E such that
2eh AN T. Then since z¢ T, it was shown in the proof of Lemma 1
that sup{(z A T)NT}=sup{(h A T)NT}. Therefore a,(2)eh AT
and since b a,(z), we havebe(h A T) N T and hencebe(z A T) N T.
Then by the definition of a,(z), we have b < a,(z). Thus «,(z) = b,
and A T)NT=(AT)NT. By Lemma 1,2 A TC fA T. Since
b=a,then f<e. Hence z < f < e implies that zee A L.

(ii) ¢ is one-to-one. Suppose p, p’ €L such that ¢;(p) = 4:(v"),
1 =1,2, We will show that p = p’. We consider three cases.

Case 1. p,p' e L\T- Then since ¢,(p) = Ni(a(p)) = nua(p’) =
é,(p"), we have that a,(p)2 a,(p’). Choose ¢, fc E such that pce A T
and e f A T. Then from the proof of Lemma 1, it follows that

sup{(e A T)N T} = sup{(p A T) N T} = a,(p),
and
sup{(f AT)NT}=sup{(® AN T)NT} = a(p).

But since a,(p)¥ a(p’), we must have a,(p)e(e AT)NT and
aPe(f ANT)NT. It now follows that «,(p") < a,(p) = a,(p’) and
hence a,(p) = a,(p') = a,(¢) = a,(f). Hence by Lemma 1, either
fANTcCceANT or eNTCfANT. Suppose fFATCeANT. Then
p,pee A T. Using a similar argument and the dual of Lemma 1 we
obtain ge F such that p,p'eg Vv T. Since p,p’'¢ T, we conclude
from Lemma 5 that p = p'.

Case 2, p,p'eT. Assume p=<p'. If p» =1, then p’elVv T
and p’S#p implies that pel v/ T and so p = 1. Suppose p’ < 1 and
let f=sup{heE|pechVv T}). Then f<1. Let f,— f, where f,e¢ E
and f, > f for all n. Then pef, VvV T and hence p'¢f, Vv T for all
n. Therefore if f, \V pe T, then f, V »p > 9’, and if f, V p¢ T then
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p=(. VD) ADPE(f, VD) AT and hence p'c(f,V ») AT since
p7’p and f,VpeT. So f,V p=7p for all n. Therefore, by the
continuity of V,p =V p £ 9. Then p = p'.

Case 3. pe¢T,p €T. Choose ¢, fe E such that
peeNT)N(SfVT).

Then since pe T,{p} =€ AT)N(f VvV T) by Lemma 5. Since
6.(p) = ¢,(p"), we have sup{(p A T)N T} > p’ from which follows
pep ANTneANT. Similarly, p’e f\ T, contradicting Lemma 5.

(iii) ¢ is a homomorphism. We will show that ¢, is a homomorphism
with respect to \/, Similar arguments will show that ¢, is a homo-
morphism with respect to A and that ¢, is a homomorphism with
respect to \V and A.

Let p,p’ e L;x = a,(p) =sup{(p A T) N T},

x = a(p) =sup{(p’vT)NT},
and
z=a(pVp)=sup{pV)ANT)NT}.

Assume that ¢ < 2’. Thenx Vv 2’ = 2’ and 7,(x \V o) = () V n,(2') =
n(a). Then ¢,(p) V ¢.(p') = Ni(x) V 7(2') = 7i(x’). We will show that
o(p V p) = () = (), l.e., 2770,

We have that 2/ <9 Z<p Vo, so 2’e((pVP)ANT)NT and
hence ' < 2. If zee AT for ec E, then clearly #’ce A T. Now
suppose ' ce A T,ec E. We consider two cases.

Case 1. p'e¢ E. We may assume that ¢ = inf{he E|a'eh N T}.
If peT, then p’ =a’ce A T. If p’e¢ T, then choose g < E such that
p'eg ANT. Then 2’ < p’ < g implies that 2’eg A T and hence ¢ < g.

From Lemma 6,¢ = sup C,.. But the proof of Lemma 1 gives

o =sup{(® ANT)NT}=sup{lg ANT)NT},

and therefore g < e. Hence g = ¢ and p’ < e.

We will show that p <e also. If peT, then p=a 2" Ze.
Suppose pe T and let f=inf{heF|peh < T}. Then since pe T,
sup{(f AT)NT}=sup{(p AT)N T} =2a =2 and hence f < e. Then
the inequality p < f < e gives the desired conclusion,

We now have p' < ¢, p <e; hence p\V p' <e. Since p’eeAN T,
the inequality »’ < pV p' < e and Lemma 4 gives pV p'ce A T.
Hence zece A T. This concludes the proof for Case 1.

Case 2. p'cE. If p' < p, then p VvV p' = p implies © = z. But
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then ¢ < o’ < 2z implies #’ = 2z and so zee A T.
If ¢ p A L then since

v=sup{p ANT)NT}=a" =sup{(® ANT)N T},

the proof of the continuity of ¢, shows that pep” A L. Hence
pV p =9 and again we conclude that z = 2. This concludes the
proof that ¢, is a homomorphism with respect to \/, and the proof
of Theorem 1,

2. Compact connected lattices in the plane. In [4] Wallace
proved that a compact connected lattice L which is imbeddable in the
plane is a cyclic chain (in the sense of Whyburn {5]) and that each
true cyclic element is a convex sublattice and is homeomorphic to a
2-cell. Thus by Theorem 1, each true cyclic element is iseomorphic
to a sublattice of I x I. Let 4 denote the diagonal thread in I x I.
Label the true cyclic elements of L, {C;}z,. Denote the 0 and 1 of
C; by a; and b, respectively. Let T be any maximal chain from 0 to
1 in L, and let % be an iseomorphism from 7T onto 4, the diagonal
in I x I. Then the “square” in I x I with upper right hand vertex
h(b;) and lower left hand vertex h(a;) is a sublattice of I x I which
is iseomorphic to I x I. Hence C; may be imbedded in this sublattice
as in Theorem 1. In this manner an iseomorphism of L into I x I
is determined. Thus we have proven:

THEOREM 2. HKvery compact connected lattice in the plane 1s
iseomorphic to a sublattice of I x I.

Finally we state an explicit description of the compact connected
sublattices of I x I containing (0, 0) and (1, 1).

THEOREM 3. Let f and g be functions from I into I satisfying

(i) f, g are nondecreasing, f(0) =0, g(1) =1,

(i) f(x) < g(x) for all xel,

(iili) f 7s continuous from the left and g is continuous from the
right.
Then the set L = {(x,y): f(®) =y = g@)} s a compact connected
sublattice of I X I containing (0,0) and (1,1). Conversely, if L s
a compact connected sublattice of I X I containing (0,0) and (1,1)
then there exist functions f and g satisfying i-iii such that

L={@19:7f@=y=9@).

Proof. The proof is straightforward and will be omitted. The fune-
tions f and ¢ alluded to in the second part are defined as follows:
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g(x) = sup {L N ({z} x I)} for xel
flx) = inf {L N ({=} x I)} for xel.

3. Comments. Edmondson has given an example of a topological
lattice on a 38-cell which is nonmodular; hence this lattice is not a sub-
lattice of I x I x I [2]. This shows that the higher dimensional
analogous of Theorem 1 are false.

This the result of this paper does not hold if the term “lattice”
be replaced by “semilattice” is a consequence of the results of D.R.
Brown, [1], regarding semilattice structures on the two-cell.

Wallace has conjectured that every 2-dimensional compact con-
nected lattice with no cutpoints is a two-cell. A related conjecture is
that every 2-dimensional compact connected lattice can be imbedded in
the plane. If this were true, the words “in the plane” in the state-
ment of Theorem 2 could be replaced by “2-dimensional.”

The authors are pleased to acknowledge their indebtedness to
Professor R. J. Koch for his suggestions in the preparation of this

paper.
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