Pacific Journal of Mathematics

CONVOLUTION OPERATORS ON $L^p(G)$ AND PROPERTIES OF LOCALLY COMPACT GROUPS

JOHN ERIC GILBERT

Vol. 24, No. 2

June 1968

CONVOLUTION OPERATORS ON $L^{p}(G)$ AND PROPERTIES OF LOCALLY COMPACT GROUPS

JOHN E. GILBERT

A locally compact group G is said to have property (R) if every continuous positive-definite function on G can be approximated uniformly on compact sets by functions of the form $s * \tilde{s}, s \in \mathscr{K}(G)$. When μ is a bounded, regular, Borel measure on G, the convolution operator T_{μ} defined by

$$(T_\mu)(s)=(\mu*s)(x)=\int_{\mathcal{G}}s(y^{-1}x)d\mu(y)\;,\qquad s\in\mathscr{K}(G)\;,$$

can be extended to a bounded operator on $L^p(G)$ whose norm satisfies $||T_{\mu}||_p \leq ||\mu||$. In this paper three characterizations of property (R) are given in terms of the norm $||T_{\mu}||_p$, $1 , for specific operators <math>T_{\mu}$. From these characterizations some closely-related, but seemingly weaker properties than (R), are shown to be equivalent to (R). Examples illustrating the results are given also.

If dx denotes left-invariant Haar measure on G and $\mathscr{K}(G)$ the space of continuous, complex-valued functions with compact support on G, the Haar modulus \varDelta is defined by

$$\int_{G} s(xa^{-1})dx = \varDelta(a) \int_{G} s(x)dx$$
, $s \in \mathscr{K}(G)$.

The Haar measure of a set $A \subset G$ is written m(A). The norms on the measure algebra M(G) and on the spaces $L^{p}(G)$, $1 \leq p \leq \infty$, defined with respect to the given Haar measure, will be denoted by ||(.)||, $||(.)||_{p}$ respectively. For any space $\mathscr{D}(G)$ of functions or measures on G, the nonnegative elements in $\mathscr{D}(G)$ will be specified by $\mathscr{D}^{+}(G)$. We set $\tilde{s}(x) = \overline{s(x^{-1})}$, $s(x) = \overline{s(x^{-1})} \varDelta(x^{-1})$ when $s \in \mathscr{H}(G)$ and $\mu^{*}(x) =$ $\overline{\mu(x^{-1})}$ when $\mu \in M(G)$. Since $\mu \to \mu^{*}$ is an involution on M(G), a measure μ is called hermitian if $\mu = \mu^{*}$. Following Godement ([8], see also Dixmier [5] § 13) we say that a measure $\mu \in M(G)$ is of positive type if

(1)
$$\mu(s * \tilde{s}) = \int_{\mathcal{G}} \left(\int_{\mathcal{G}} \overline{s(x^{-1}y)} s(y) dy \right) d\mu(x) \ge 0 ,$$

for all $s \in \mathcal{K}(G)$. When (.,.) denotes the usual inner product on $L^{2}(G)$, inequality (1) can be rewritten as

$$(\mu * s, s) \geq 0$$
, $s \in \mathscr{K}(G)$,

changing s to \overline{s} , i.e., μ is a positive element in the operator algebra

of G. A continuous function ϕ is said to be positive-definite if

for $s \in \mathscr{K}(G)$, i.e., ϕ is a positive functional on the involutive algebra $L^{1}(G)$, ([5] p. 256). Note that $s * \tilde{s}$ is positive definite; consequently $s * \tilde{s}(x^{-1}) = s * \tilde{s}(x)$, $|s * \tilde{s}| \leq s * \tilde{s}(e)$.

The following trivial lemma will be useful.

LEMMA 1. Let μ be a hermitian measure in $M_+(G)$. Then

 $|| T_{\mu} ||_{2} = \sup \mu(s \ast \widetilde{s}) ,$

when the supremum is taken over all $s \in \mathscr{K}_+(G)$, $||s||_2 = 1$.

Proof. Certainly $||T_{\mu}||_{2} = \sup |\mu(\sigma * \tilde{\sigma})|, \sigma \in \mathscr{K}(G), ||\sigma||_{2} = 1$. Set $s = |\sigma|$. Then $||s||_{2} = 1, |\sigma * \tilde{\sigma}| \leq s * \tilde{s}$ and

$$|\mu(\sigma * \widetilde{\sigma})| \leq \int_{G} |\sigma * \widetilde{\sigma}| d\mu \leq \int_{G} s * \widetilde{s} d\mu = \mu(s * \widetilde{s}) ,$$

consequently, (2) holds.

2. In this section we give the principal characterizations of property (R). To every regular Borel measure μ on G there corresponds a convolution operator T_{μ} defined by

$$(T_{\mu})(s) = (\mu * s)(x) = \int_{G} s(y^{-1}x)d\mu(y) , \qquad s \in \mathscr{K}(G) .$$

If T_{μ} can be extended to a bounded operator on $L^{p}(G)$ we say that μ is *p*-admissible (cf. Leptin [14]); in particular, every bounded measure μ in M(G) is *p*-admissible and, in this case, the operator norm $||T_{\mu}||_{p}$ satisfies $||T_{\mu}||_{p} \leq ||\mu||$. Previously, Dieudonne ([3], [4]), Hulanicki ([9]) have shown that there is an interesting relationship between property (*R*) (or properties equivalent to (*R*)) and the convolution operators $T_{\mu}, \mu \in M(G)$. On the other hand, if every positive *p*-admissible measure is necessarily a bounded measure, *G* is said to be a K_{p} -group (Leptin [14] p. 111).

THEOREM A. For any p, 1 , the following assertions are equivalent;

- (i) G has property (R),
- (ii) $|| T_{\mu} ||_{p} = || \mu ||$ for every $\mu \in M_{+}(G)$,
- (iii) G is a K_p -group.

REMARKS. (a) For unimodular groups a result weaker than the equivalence of (i), (ii) has been given by Hulanicki (see [9] Ths. 5.2, 5.3, 5.4). However, in view of the apparent inaccuracies in [9], (cf. remarks [10] p. 99) we shall give an entirely different proof.

(b) The equivalence of (i), (iii) answers negatively a question raised by Leptin ([14] p. 111) concerning the existence of unbounded positive *p*-admissible measures¹. The results of Kunze-Stein ([13] p. 52) show that there are positive unbounded *p*-admissible measures on SL(R, 2).

Proof of Theorem A. (i) \Rightarrow (ii). By convexity it is enough to prove that $||T_{\mu}||_{2} = ||\mu||$ for all $\mu \in M_{+}(G)$ since $||T_{\mu}||_{1} = ||\mu|| = ||T_{\mu}||_{\infty}$ always holds (cf. Wendel [20], Dieudonné [3] p. 284). It is even enough to establish equality when μ has compact support say K. Since G has property (R), for each $\varepsilon > 0$, there exists $s \in \mathscr{K}(G)$ such that

$$\sup_{y\in \kappa} |1-(s*\widetilde{s})(y)|$$

Hence

$$| \, || \, \mu \, || - | \, \mu(s st \widetilde{s}) \, | \, | \leq \int_{\scriptscriptstyle K} | \, 1 - s st \widetilde{s} \, | \, d\mu < arepsilon \, || \, \mu \, || \; .$$

Thus

$$\parallel \mu \parallel \geq \parallel T_{\mu} \parallel_{\scriptscriptstyle 2} \geq \mid \mu(s st \widetilde{s}) \mid \geq (1 - arepsilon) \parallel \mu \parallel arepsilon$$

i.e. $||T_{\mu}||_2 = ||\mu||$.

(ii) \Rightarrow (iii). Let μ be a nonnegative *p*-admissible measure and *K* a compact set in *G*. If μ_{κ} denotes the restriction of μ to *K* then, exactly as in the proof of Lemma 1,

$$|| \ T_{\mu_K} ||_p = \sup_{s,t} \mu_{\scriptscriptstyle K}(s st \widetilde{t}\,) \leq \sup_{s,t} \mu(s st \widetilde{t}\,) = || \ T_{\mu} ||_p$$
 ,

where $s, t \in \mathscr{K}_+(G)$, $||s||_p$, $||t||_q \leq 1$. Thus, by property (ii),

$$\| \, \mu_{\scriptscriptstyle K} \, \| = \| \, T_{\mu_{\scriptscriptstyle K}} \, \|_{\scriptscriptstyle p} \leq \| \, T_{\mu} \, \|_{\scriptscriptstyle p} < \infty$$
 ,

for all $K \subset G$. Consequently, $\mu \in M_+(G)$, i.e. G is a K_p -group.

(iii) \Rightarrow (ii). If (ii) is false let μ be a measure in $M_+(G)$ of norm 1 such that $||T_{\mu}||_p = r < 1$. When ν_n denotes the *n*-fold convolution of μ with itself and T_n the convolution operator on $L^p(G)$ defined by ν_n we have $||\nu_n|| = 1$, $||T_n||_p \leq r^n$. Now let σ be any function in $\mathscr{K}_+(G)$ with $\int_G \sigma dx = 1$ and set $\nu = (\sum_{n=1}^{\infty} \nu_n) * \sigma$. We shall prove that

¹ The referee has kindly informed me that Leptin himself has proved Theorem A in his paper On locally compact groups with invariant means (to appear).

JOHN E. GILBERT

 ν is an unbounded measure on G for which $||T_{\nu}||_p < (1/1 - r)$ in contradiction to the hypothesis that G is a K_p -group. For arbitrary $s \in \mathscr{K}(G)$,

$$igg| igg| igg$$

where K is the support of s; consequently ν is a continuous linear functional on $\mathcal{K}(G)$. Obviously, r is unbounded, for

$$\sum_{n=1}^{N}\int(\boldsymbol{\nu}_{n}\ast\boldsymbol{\sigma})dx\,=\,N\longrightarrow\infty$$

as $N \to \infty$. On the other hand, for $f \in L^p(G)$,

$$|| \, \mathbf{v} * f \, ||_p \leq \sum || \, \mathbf{v}_n * \sigma * f \, ||_p \leq || \, f \, ||_p / (1 - r)$$
 ,

and so ν is a positive unbounded *p*-admissible measure.

(ii) \Rightarrow (i). If G does not have property (R) there is a measure $\nu \in M(G)$ of positive type for which $\int_{G} d\nu < 0$, (cf. Darsow [2], Dixmier [5] p. 319). This ν is necessarily hermitian ([5] p. 264) while if $Rl(\nu) = \mu_{+} - \mu_{-}, \mu_{+}, \mu_{-} \in M_{+}(G)$ we have

$$egin{aligned} \mu_+(s*\widetilde{s}) &\geqq \mu_-(s*\widetilde{s}) \;, \qquad s \in \mathscr{K}_+(G) \;, \ &\parallel \mu_+ \parallel = \int\!\! d\mu_+ < \int\!\! d\mu_- = \parallel \mu_- \parallel \;. \end{aligned}$$

But μ_+ , μ_- are also hermitian; hence, by Lemma 1,

With this contradiction the proof of Theorem A is complete.

A group G is said to admit an *invariant mean* if there is a positive linear functional \mathscr{M} on $L^{\infty}(G)$ of norm 1 such that

$$\mathscr{M}(1)=1 \;, \qquad \mathscr{M}(\phi)=\mathscr{M}(\phi_a)=\mathscr{M}(_a\phi)\;, \qquad a\in G\;,$$

where $\phi_a(x) = \phi(a^{-1}x)$, $_a\phi(x) = \phi(xa)$.

LEMMA 2 (Følner-Namioka). Both the following conditions are necessary and sufficient for G to admit an invariant mean:

(i) given any finite set $K = \{a_1, \dots, a_n\}$ in G and $\varepsilon > 0$, there exists a measurable set A in G such that $0 < m(A) < \infty$ and

$$m(a_jA\cap A)>(1-arepsilon)m(A)\;,\qquad j=1,\,2,\,\cdots,\,n\;,$$

(ii) there is a constant k, 0 < k < 1, such that, to each finite

set $K = \{a_1, \dots, a_n\}$ in G, there corresponds a measurable set A in G with $0 < m(A) < \infty$ and

$$rac{1}{n}\sum\limits_{j=1}^n m(a_jA\cap A)>k$$
 .

For discrete groups these criteria are due to Følner ([7]); for locally compact groups in general, (i) is a combination of the results of Namioka ([15] Th. 3.7) and Dixmier ([6] § 4, 3(a)). The proof of (ii) is a straightforward modification of that given by Følner (see, for instance, Hulanicki ([9] Th. 5.3)).

THEOREM B. Let f be a hermitian function in $L^{\iota}_{+}(G)$ nonzero almost everywhere. Then G has property (R) if and only if

$$|| T_f ||_p = \int_G f(x) dx$$

for some 1 .

REMARK. Theorem B gives a partial extension to all locally compact groups of the result of Kesten ([11] p. 150) for countable discrete groups since property (R) is equivalent to the existence of an invariant mean (see Reiter [17], [18]).

Proof of Theorem B. The necessity of the condition follows at once from Theorem A. For the proof of sufficiency we may assume that p = 2. Then, by Lemma 1, for any $\varepsilon, \delta > 0$ there exists $s \in \mathscr{K}_+(G), ||s||_2 = 1$, such that

$$\int_{_G} f(x) dx - \int_{_G} f(x) (s * \widetilde{s})(x) dx < arepsilon \delta$$
 ,

because $0 \leq s * \tilde{s} \leq s * \tilde{s}(e) = 1$. Hence, for each compact set K in G,

$$\int_{\kappa} f(x) \, | \, \mathbf{1} - (s * \widetilde{s}\,)(x) \, | \, dx < arepsilon \delta \, \, .$$

If we assume K is of nonzero measure, on the subset K_{ε} of K on which $|1 - (s * \tilde{s})(x)| > \varepsilon$, $\int_{K_{\varepsilon}} f(x) dx < \delta$. Assume for the moment that f is continuous and everywhere nonzero; in this case

$$m(K_{arepsilon}) < \delta / {\inf_{x \in K} f(x)}$$
 .

Consequently, given any compact set $K \subset G$, ε , $\delta > 0$ there exists $s \in \mathscr{K}_+(G)$ with $||s||_2 = 1$ and a subset K_{ε} of K such that

$$||1-s*\widetilde{s}(x)| , $x\in Kackslash K_arepsilon$, $m(K_arepsilon)<\delta$.$$

When $g \in \mathcal{K}_+(G)$ has compact support K we have, therefore,

i.e., $||g||_1 = ||T_g||_1$. Now let $\mu \in M_+(G)$, $\phi \in \mathscr{K}_+(G)$ be given, where $||\phi||_1 = 1$ and μ has compact support. Then, with s, σ arbitrary functions in $\mathscr{K}_+(G)$ satisfying $||s||_2 = ||\sigma||_2 = 1$,

$$egin{aligned} || \ T_{\mu} \mid|_2 &= \sup_{s,\sigma} \mid \mu(s*\widetilde{\sigma}) \mid \geq \sup_{s,\sigma} \mid \mu(\phi*s*\widetilde{\sigma}) \mid \ &= \sup_{s,\sigma} \mid (\mu*\phi)(s*\widetilde{\sigma}) \mid = \mid\mid T_{\mu*\phi} \mid|_2 = \mid\mid \mu*\phi \mid|_1 = \mid\mid \mu \mid\mid \end{aligned}$$

since $\mu * \phi \in \mathscr{H}_+(G)$. Hence $||T_{\mu}||_2 = ||\mu||$. The extension of this inequality to all of $M_+(G)$ is immediate. Consequently G has property (R). It remains now to show that f may be assumed continuous and everywhere nonzero. Choose any $\sigma \in \mathscr{H}_+(G)$ with $\int_{\mathcal{G}} \sigma(x) dx = 1$ and let K_1 be the support of σ (we assume K_1 contains the identity e of G). Given any $\varepsilon > 0$ choose $s \in \mathscr{H}_+(G)$ and K_2 a compact set in G such that

$$egin{aligned} &\int_{G\setminus K_2} f(x)dx < arepsilon, \qquad |1-(s*\widetilde{s})(x)| < arepsilon, x \in K_1 \cdot K_2 ar{K_arepsilon} & K_arepsilon \ where \ \int_{K_arepsilon} f(x)dx < arepsilon \ ext{ for some subset } K_arepsilon \ ext{ of } K_1 \cdot K_2. \end{aligned}$$
 Then $\int_G (\sigma*f)(x)(1-(s*\widetilde{s})(x))dx &= \int_G \sigma(y) igg\{ \int_G f(x)(1-(s*\widetilde{s})(yx))dx igg\} dy \ &\leq \int_G \sigma(y) igg\{ \int_{G\setminus K_2} f(x)dx + \int_{K_2} f(x)(1-(s*\widetilde{s})(yx))dx igg\} dy \ &< \int_G \sigma(y)(arepsilon+arepsilon || f ||_1 + arepsilon) dy = arepsilon(2+|| f ||_1) \ . \end{aligned}$

Hence $||T_{\sigma*f}||_2 = ||\sigma*f||_1$; but, obviously $\sigma*f$ is continuous and everywhere nonzero. This completes the proof of Theorem B.

THEOREM C. Let G be a locally compact group. Then G admits an invariant mean if and only if, for some $p, 1 , <math>||T_{\mu}||_p =$ $||\mu||$ whenever μ is a discrete measure in $M_+(G)$.

Proof. If G_a denotes G provided with the discrete topology, the discrete measures in $M_+(G)$ can be identified with $l_+^1(G_d)$. To show that $||T_{\mu}||_p = ||\mu||$ for some $1 and all <math>\mu \in l_+^1(G_d)$ when G admits an invariant mean, it is enough to prove that $||T_{\mu}||_2 = ||\mu||$

for all $\mu \in l^1_+(G_d)$ having compact support (note that T_{μ} is an operator on $L^2(G)$). Let $K = \{a_1, \dots, a_n\}$ denote the support of any such measure. Then, given $\varepsilon > 0$, there exists a measurable set A in G, $0 < m(A) < \infty$, such that

$$m(a_jA\cap A) > (1-\varepsilon)m(A)$$
, $j = 1, \dots, n$.

Setting $\psi = \chi_A/m(A)^{1/2}$ with χ_A the characteristic function of A we have, therefore,

$$egin{aligned} & || \, \mu \, || \, - \, | \, \mu(\psi st \widetilde{\psi}) \, | \, | \ & \leq \sum\limits_{j=1}^n \mu(a_j) \, \left| \, 1 - rac{m(a_jA \cap A)}{m(A)} \,
ight| < arepsilon \, || \, \mu \, || \, . \end{aligned}$$

Consequently, $||T_{\mu}||_2 = ||\mu||$ since $||\psi||_2 = 1$. Suppose conversely that $||T_{\mu}||_2 = ||\mu||$ for all $\mu \in l_+^1(G_d)$, (again by convexity arguments it suffices to consider p = 2). Denote by K any finite set $\{a_1, \dots, a_n\}$ in G and suppose that a_j occurs w(j) times in K; set $C = K \cup K^{-1}$. Then the measure μ in $l_+^1(G_d)$ defined by

$$\mu(x) = egin{cases} w(j)/2n & x = a_j \ , & a_j
eq a_j^{-1} \ w(j)/2n & x = a_j^{-1} \ , & a_j^{-1}
eq a_j \ w(j)/n & x = a_j \ , & a_j = a_j^{-1} \ 0 & ext{Otherwise} \end{cases}$$

is hermitian. Hence, by Lemma 1, given any $\varepsilon > 0$ there exists $s \in \mathscr{K}_+(G)$, $||s||_2 = 1$ such that

$$\|\|\mu\| - \mu(s*\widetilde{s}\,) < arepsilon^2\!/2$$
 ,

i.e.,

$$1 - rac{1}{2n} \sum\limits_{j=1}^n \left\{ (s st \widetilde{s}\,)(a_j) + (s st \widetilde{s}\,)(a_j^{-1})
ight\} < arepsilon^2/2 \; .$$

Set $\sigma = s^2$. Then

$$egin{aligned} &\sum_{j=1}^n{(||\,\sigma\,-\,\sigma_{a_j}\,||_1)^2} &\leq 4\sum_{j=1}^n{(||\,s\,-\,s_{a_j}\,||_2)^2} \ &= 8\sum_{j=1}^n{|\,1\,-\,(s*\widetilde{s}\,)(a_j)\,|} < 4narepsilon^2 \;, \end{aligned}$$

since $(s * \tilde{s})(a_j) = (s * \tilde{s})(a_j^{-1}) \leq \text{when } s \in \mathscr{H}_+(G)$. Thus

$$rac{1}{n}\sum\limits_{j=1}^n ||\,\sigma-\sigma_{a_j}\,||_{\scriptscriptstyle 1} \leq rac{1}{n}\,(4narepsilon^{2})^{\scriptscriptstyle 1/2}n^{\scriptscriptstyle 1/2} = 2arepsilon$$
 .

If, for $\lambda \ge 0$, $E_{\lambda} = \{x \in G: \sigma(x) \ge \lambda\}$ and χ_{λ} is the characteristic function of E_{λ} , we can repeat the proof of Hulanicki ([10] p. 98) to obtain

Since

$$\int_{0}^{\infty} m(E_{\lambda})d\lambda = \int_{G} \sigma(x)dx = 1$$

there exists E_{λ} , $m(E_{\lambda}) \neq 0$, such that

$$rac{1}{2n}\sum\limits_{j=1}^nrac{m(a_jE_\lambdaarDelta E_\lambda)}{m(E_\lambda)} .$$

Consequently,

$$rac{1}{n}\sum\limits_{j=1}^n m(a_j E_{\lambda}\cap E_{\lambda}) > (1-arepsilon)m(E_{\lambda}) \;,$$

i.e., G admits an invariant mean (Lemma 2).

DEFINITION. For given C, 0 < C < 1, a locally compact group G is said to have property R(C), resp. $R_a(C)$, if, given any compact set $K \subset G$, resp. finite set $K = \{a_1, \dots, a_n\} \subset G$, there exists $s \in \mathscr{K}(G)$ with $||s||_2 = 1$ such that

$$\sup_{x \in K} |1 - (s * \widetilde{s})(x)| < C$$
 .

respectively

$$\sup_{1\leq j\leq n}|1-(s*\widetilde{s}\,)(a_j)| < C$$
 .

Thus, if G has property R(C) for all 0 < C < 1 it has property (R), (cf. Dixmier [5] p. 319).

THEOREM D. Let G be a locally compact group. Then the following assertions are equivalent:

- (i) G has property (R),
- (ii) G has property R(C) for some 0 < C < 1,
- (iii) G has property $R_d(C)$ for some 0 < C < 1.

Proof. Obviously $(i) \Rightarrow (ii) \Rightarrow (iii)$. To show that $(iii) \Rightarrow (i)$ it is enough to prove that, when G has property $R_d(C)$ for some 0 < C < 1, then $||T_{\mu}||_2 = ||\mu||$ for every $\mu \in l_+^1(G_d)$. Since then, by Theorem C, G admits an invariant mean; consequently it will also have property (R) (cf. Reiter [17], [18]). Let μ be an element of $l_+^1(G_d)$ having

compact support say $K = \{a_1, \dots, a_n\}$. By $R_d(C)$ there exists $s \in \mathcal{K}(G)$, $||s||_2 = 1$, such that

$$| || \mu || - | \mu(s * \tilde{s}) || \leq \sum \mu(a_j) |1 - (s * \tilde{s})(a_j)|$$
$$\leq C || \mu ||.$$

Thus $||T_{\mu}||_2 \ge (1-C) ||\mu||$ for any $\mu \in l^1_+(G_d)$ having compact support. But, if $||T_{\mu}||_2 = r ||\mu||$, r < 1, for sufficiently large n

$$egin{aligned} (1-C) \, \| \, oldsymbol{
u}_n \, \| &= (1-C) \, \| \, \mu \, \|^n \ &\leq \| \, T_n \, \|_2 \leq (\| \, T_\mu \, \|_2)^n = r^n \, \| \, \mu \, \|^n < (1-C) \, \| \, \mu \, \|^n \end{aligned}$$

where ν_n denotes the *n*-fold convolution product of μ with itself and $T_n = T_{\nu_n}$. This is an obvious contradiction. Thus $||T_{\mu}||_2 = ||\mu||$ for all $\mu \in l^1_+(G_d)$ and so G has property (R).

3. By way of illustration we shall consider two groups:

(i) free group G_{∞} with generators $a_n, n = 1, 2, \dots$, each of order 2,

(ii) G = SL(R, 2).

3(i). Let G_n be the free group generated by $a_j, j = 1, \dots, n$. Darsow ([2]) has shown that, for any $s \in \mathscr{H}_+(G_n)$, $||s||_2 = 1$,

$$(\ 3\) \qquad \qquad \sup_{1\leq j\leq n} |\ 1-(s*\widetilde{s})(a_j)| > [1-(2/n)(n-1)^{1/2}] \;.$$

Consequently, G_{∞} fails to have property R(C) for any 0 < C < 1 (note that the restriction to G_n of an $s \in \mathscr{H}_+(G_{\infty})$, $||s||_2 = 1$, cannot decrease (3)). Repeating the proof of Darsow ([2] p. 452) we can show that for any such s

$$\sum_{j=1}^{n} (s * \widetilde{s})(a_j) \leq \sum_{j=1}^{n} t_j^{1/2} (1 - t_j)^{1/2}$$

for some *n*-tuple $(t_1, \dots, t_n), 0 \leq t_j \leq 1, t_1 + t_2 + \dots + t_n \leq 1$. An elementary argument using Lagrange's Multipliers shows that

$$egin{array}{lll} (\ 4\) & \sum_{j=1}^n \, (s st \widetilde{s}\,)(a_j) \leq n (1/n)^{1/2} (1\,-\,1/n)^{1/2} \ & = (n\,-\,1)^{1/2} \end{array}$$

whenever $s \in \mathscr{H}_+(G_{\infty})$, $||s||_2 = 1$. Now the characteristic function of the subset (a_1, \dots, a_n) of G_{∞} is a hermitian measure μ_n in $M_+(G_{\infty})$ of norm *n*. But, by (4), as an operator on $L^2(G_n)$,

$$||T_{\mu_n}||_2 \leq (n-1)^{1/2}$$

All the above calculations again hold when G_n is regarded as a subgroup of G_{∞} . Consider the measure

$$\mu = \sum_{n=1}^{\infty} (1/n^2) \mu_n$$
 .

Then $\mu \notin M_+(G_{\infty})$, but $||T_{\mu}||_2 \leq \sum_{n=1}^{\infty} (1/n^2)(n-1)^{1/2} < \infty$, i.e., μ is a positive, unbounded, 2-admissible measure.

3(ii). The group SL(R, 2) contains a discrete subgroup H isomorphic to the free group $G_{a,b}$ on two generators a, b (see, for example, [1]). Furthermore, G = SL(R, 2) possesses a fundamental domain F measurable with respect to Haar measure on G (cf. [16], [19]) such that

$$\int_{G} s(x) dx = \sum_{\xi \in H} \int_{F} s(\xi x) dx , \qquad s \in \mathscr{K}(G) .$$

Following Reiter ([16] p. 2883) we set

whenever $s \in \mathscr{K}(G)$. Now, for fixed $y \in H$, when $s \in \mathscr{K}_+(G)$, $||s||_2 = 1$ and $\sigma = s^2$, we have

$$egin{aligned} &\sum_{\xi \in H} \mid \sigma_{H}(\xi) \, - \, \sigma_{H}(\eta^{-1}\xi) \mid = \sum_{\xi \in H} \, \left| \int_{F} (\sigma(\xi x) \, - \, \sigma(\eta^{-1}\xi x)) dx \,
ight| \ & \leq \int_{G} \mid \sigma(x) \, - \, \sigma(\eta^{-1}x) \mid dx \, \leq \, ||\, s \, + \, s_\eta \, ||_2 \! \cdot \, ||\, s \, - \, s_\eta \, ||_2 \ & \leq 2^{3/2} \mid 1 \, - \, (s st \widetilde{s})(\eta) \mid^{1/2} ; \end{aligned}$$

clearly $\sum_{\xi \in H} \sigma_H(\xi) = 1$. Denote by M the subset of H which can be identified with $\{a, a^2, \dots, a^n, b, b^2, \dots, b^n\}$ in $G_{a,b}$. Then, if N denotes all words in $G_{a,b}$ starting with b and $P = G_{a,b} \setminus N$

$$egin{aligned} &1 \geq \sum\limits_{m=0}^n \sum\limits_{\xi \in N} \sigma_{_H}(a^m \hat{\xi}) > (n+1) \sum\limits_{\xi \in N} \sigma_{_H}(\hat{\xi}) - n arepsilon \ &1 \geq \sum\limits_{m=0}^n \sum\limits_{\xi \in P} \sigma_{_H}(b^m \hat{\xi}) > (n+1) \sum\limits_{\xi \in P} \sigma_{_H}(\hat{\xi}) - n arepsilon \end{aligned}$$

where $\varepsilon = \sup_{\eta \in M} \sum_{\xi \in H} |\sigma_H(\xi) - \sigma_H(\eta^{-1}\xi)|$, (see Yoshizawa [12] p. 57). Hence $\varepsilon > (n-1)/2n$. But then

$$\sup_{\eta} |1-(s*\widetilde{s})(\eta)| \geq rac{1}{8} \Big(rac{n-1}{2n}\Big)^{2}$$
 .

This inequality persists for arbitrary $s \in \mathscr{K}(G)$ with $||s||_2 = 1$ (cf. Darsow [2] p. 453), consequently SL(R, 2) does not have $R_d(C)$ for any 0 < C < 1/32.

If μ denotes the characteristic function of the set $M \cup M^{-1}$ in H (so that μ is a discrete measure in $M_+(SL(R, 2))$ then

$$(|| \mu || - || T_{\mu} ||_{2}) = \inf \left[2 \sum_{m=1}^{n} (2 - (s * \tilde{s})(a^{m}) - (s * \tilde{s})(b^{m})) \right]$$

the infinium being taken over all $s \in \mathscr{K}_+(G)$ with $||s||_2 = 1$. Hence

$$\frac{1}{2}(||\mu|| - ||T_{\mu}||_2) \geq \frac{1}{8} \left(\sum_{\eta \in M} \left|\sum_{\xi \in H} \left|\sigma_H(\xi) - \sigma_H(\eta^{-1}\xi)\right|\right|^2\right).$$

With only a simple modification of the argument of Yoshizawa we see that

$$\sum\limits_{\eta \leq M} \sum\limits_{\xi \in H} \left| \, \sigma_{\scriptscriptstyle H}(\xi) \, - \, \sigma_{\scriptscriptstyle H}(\eta^{-1}\xi) \,
ight| > (n-1)/2 \; .$$

Thus

$$4(||\,\mu\,||-||\,T_{\mu}\,||_{\scriptscriptstyle 2}) \ge (1/2n)[(n-1)/2]^{\scriptscriptstyle 2}$$
 ,

i.e., $|| \mu || = 4n$, but,

$$||T_{\mu}||_{2} \leq \{4n - (n-1)^{2}/32n\}$$
 .

Hence $|| T_{\mu} ||_2 < || \mu ||$.

For more definitive results in the contex of free groups one should consult Dieudonné ([4]), Kesten ([12]).

References

1. J. L. Brenner, Quelques groupes libres de matrices, C. R. Acad. Sci., Paris 241 (1955), pp. 1689-1691.

2. W. F. Darsow, Positive definite functions and states, Ann. of Math. 60 (1954), pp. 447-453.

3. J. Dieudonné, Sur le produit de composition II, J. Math. Pures et Appl. **39** (1960), pp. 275-292.

4. ____, Sur une propriété des groupes libres, J. Reine Agnew. Math. 204 (1960), pp. 30-34.

5. J. Dixmier, Les C*-algebres et leur représentations, Gauthier-Villars, Paris, 1964.

6. _____, Les moyennes invariantes dans les semi-groupes et leur application, Acta Sci. Math. **12** (1950), pp. 213-227.

7. E. Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), pp. 243-254.

8. R. Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. **63** (1948), pp. 1-84.

9. A. Hulanicki, Groups whose regular representation weakly contains all unitary representations, Studia Math. 24 (1964), pp. 37-59.

10. _____, Means and F ϕ lner conditions on locally compact groups, Studia Math. 27 (1966), pp. 87-104.

11. H. Kesten, Full Banach mean value on countable groups, Math. Scand. 7 (1959), pp. 146-156.

12. _____, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), pp. 336-353.

13. R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the 2×2 real unimodular group, Amer. J. Math. **82** (1960), pp. 1-62.

JOHN E. GILBERT

14. H. Leptin, Faltungen von Borelschen Maßen mit L^{p} -funktionen auf lokal kompakten Gruppen, Math. Annalen **163** (1966), pp. 111-117.

15. I. Namioka, Folner's conditions for amenable semi-groups, Math. Scand. 15 (1964), pp. 18-28.

16. H. Reiter, Sur les groupes de Lie semi-simples connexes, C. R. Acad. Sci. Paris 255 (1962), pp. 2883-2884.

17. _____, Sur la propriété (P_1) et les fonctions de type positif, C. R. Acad. Sci., Paris **258** (1964), pp. 5134-5135.

18. ____, On some properties of locally compact groups, Indag. Math. 27 (1965), pp. 697-701.

19. C. L. Siegel, Discontinuous groups, Ann. Math. 44 (1943), pp. 674-689.

20. J. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), pp. 251-261.

21. H. Yoshizawa, Some remarks on unitary representations of the free group, Osaka Math. J. 3 (1951), pp. 55-63.

Received January 31, 1967.

THE UNIVERSITY, NEWCASTLE UPON TYNE ENGLAND

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN

Stanford University Stanford, California

J. P. JANS

University of Washington Seattle, Washington 98105

J. DUGUNDJI

Department of Mathematics Rice University Houston, Texas 77001

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH	B. H. NEUMANN
------------------	---------------

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON UNIVERSITY OF NEVADA * NEW MEXICO STATE UNIVERSITY * OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION OSAKA UNIVERSITY TRW SYSTEMS UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7–17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 24, No. 2 June, 1968

John Suemper Alin and Spencer Ernest Dickson, Goldie's torsion theory and its derived functor 19	95
Steve Armentrout, Lloyd Lesley Lininger and Donald Vern Meyer, $Equivalent \ decomposition \ of \ R^3 \ \dots \ 20$	05
James Harvey Carruth, A note on partially ordered compacta	29
Charles E. Clark and Carl Eberhart, A characterization of compact	
connected planar lattices 23	33
Allan Clark and Larry Smith, <i>The rational homotopy of a wedge</i> 24	41
Donald Brooks Coleman, Semigroup algebras that are group algebras 24	47
John Eric Gilbert, Convolution operators on $L^p(G)$ and properties of	
locally compact groups 25	57
Fletcher Gross, Groups admitting a fixed-point-free automorphism of order	
2^n	69
Jack Hardy and Howard E. Lacey, Extensions of regular Borel measures 27	77
R. G. Huffstutler and Frederick Max Stein, The approximation solution of	
y' = F(x, y)	83
Michael Joseph Kascic, Jr., Polynomials in linear relations 29	91
Alan G. Konheim and Benjamin Weiss, A note on functions which	
operate	97
Warren Simms Loud, Self-adjoint multi-point boundary value problems 30	03
Kenneth Derwood Magill, Jr., Topological spaces determined by left ideals	
of semigroups	19
Morris Marden, On the derivative of canonical products	31
J. L. Nelson, A stability theorem for a third order nonlinear differential	
<i>equation</i>	41
Raymond Moos Redheffer, Functions with real poles and zeros	45
Donald Zane Spicer, Group algebras of vector-valued functions	79
Myles Tierney, Some applications of a property of the functor Ef 40	01