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A locally compact group G is said to have property (R) if
every continuous positive-definite function on G can be ap-
proximated uniformly on compact sets by functions of the
form s*s, se J%Γ(G). When μ is a bounded, regular, Borel
measure on G, the convolution operator jΓμ defined by

(Γμχβ) = (μ*s)(x) = ( s{y~'x)dμ{y) , s €

can be extended to a bounded operator on LV{G) whose norm
satisfies 11 Tμ 11 ̂  ^ 11 μ \ |. In this paper three characterizations
of property (R) are given in terms of the norm ||2V||P,
1 < p < oo, for specific operators Tμ,. From these characteri-
zations some closely-related, but seemingly weaker properties
than (R), are shown to be equivalent to (R). Examples
illustrating the results are given also.

If dx denotes left-invariant Haar measure on G and J%Γ(G) the
space of continuous, complex-valued functions with compact support
on G, the Haar modulus Δ is defined by

\ sixa'^dx = Δ(a)\ s(x)dx , s e
JG JG

The Haar measure of a set AaG is written m(A). The norms on
the measure algebra M(G) and on the spaces LP(G), 1 ^ p ^ oo, defined
with respect to the given Haar measure, will be denoted by | |(.)ll>
| | ( . ) l l * respectively. For any space £&(G) of functions or measures
on G, the nonnegative elements in &(G) will be specified by &+{G).

We set s(x) = six"1), s(x) = s{x"ι)Δ{χ-1) when S6JT"(G) and μ*(x) =

μix"1) when μ e M(G). Since μ—>μ* is an involution on M(G), a

measure μ is called hermitian if μ = μ*. Following Godement ([8],

see also Dixmier [5] §13) we say that a measure μeM(G) is of

positive type if

(1) μ(s*8) = ^J^GS(χ-1y)s(y)dyyμ(x) ^ 0 ,

for all s e 3ίΓ(G). When (. , . ) denotes the usual inner product on
L2(G), inequality (1) can be rewritten as

(μ*89s) ^ 0 , s

changing s to s, i.e., μ is a positive element in the operator algebra
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of G. A continuous function φ is said to be positive-definite if

φ(s**s) = \ \ φ(y-1x)s(y)s(x)dydx :> 0 ,
JGJG

for se Sί^{G), i.e., φ is a positive functional on the involutive algebra
LX(G), ([5] p. 256). Note that s*s is positive definite; consequently
s * six"1) = s * s(x), I 8 * s | ^ s * s(e).

The following trivial lemma will be useful.

LEMMA 1. Let μ be a hermitian measure in M+(G). Then

( 2 ) || Tμ\\2 = supμ(s*s) ,

when the supremum is taken over all se J%^+(G), \\s\\2 = 1.

Proof. Certainly j | Tμ ||2 = sup | μ(σ*σ) |, a e JΓ(G), \\ σ ||2 = 1. Set
s — I σ |. Then || s ||2 = 1, | σ * σ | ^ s * s and

^ \ \σ*σ\dμ ^\ s* sdμ = μ(s * s) ,

consequently, (2) holds.

2* In this section we give the principal characterizations of
property (R). To every regular Borel measure μ on G there corresponds
a convolution operator Tμ defined by

(Tμ)(s) = (μ*s)(x) = \ s(y-'x)dμ{y) , s e 3ίΓ(G) .
JG

If Tμ can be extended to a bounded operator on LP(G) we say that
μ is ^-admissible (cf. Leptin [14]); in particular, every bounded
measure μ in M(G) is p-admissible and, in this case, the operator
norm \\Tμ\\p satisfies || Tμ \\p ̂  || μ | |. Previously, Dieudonne ([3], [4]),
Hulanicki ([9]) have shown that there is an interesting relationship
between property (R) (or properties equivalent to (R)) and the con-
volution operators Tμ, μ e M(G). On the other hand, if every positive
p-admissible measure is necessarily a bounded measure, G is said to
be a Kp-group (Leptin [14] p. 111).

THEOREM A. For any p, 1 < p < oo, the following assertions
are equivalent;

( i ) G has property (R),
(ii) || Tμ \\p = || μ || for every μ e M+(G),
(iii) G is a Kv-group.
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REMARKS, (a) For unimodular groups a result weaker than the
equivalence of (i), (ii) has been given by Hulanicki (see [9] Ths. 5.2,
5.3, 5.4). However, in view of the apparent inaccuracies in [9], (cf.
remarks [10] p. 99) we shall give an entirely different proof.

(b) The equivalence of (i), (iii) answers negatively a question
raised by Leptin ([14] p. I l l) concerning the existence of unbounded
positive p-admissible measures1. The results of Kunze-Stein ([13] p.
52) show that there are positive unbounded p-admissible measures on
SL(R, 2).

Proof of Theorem A. (i) => (ii). By convexity it is enough to
prove that || Tμ ||2 - || μ || for all μ e M+(G) since || Tμ ||x = || μ || = || Tμ |U
always holds (cf. Wendel [20], Dieudonne [3] p. 284). It is even
enough to establish equality whenμ has compact support say K. Since
G has property (R), for each ε > 0, there exists s e 3ίΓ{G) such that

s u p | l - (s*s)(y)\ < ε , | | s | | 2 = 1 .

Hence

I || μ\\ - \ μ ( 8 * 8 ) \ \ ^ \ \l-8*S\dμ<e\\μ\\.
J K

Thus

i.e. || 7V[|2 = || μ\\.
(ii) ==> (iii). Let μ be a nonnegative p-admissible measure and K

& compact set in G. If μκ denotes the restriction of μ to K then,
exactly as in the proof of Lemma 1,

|| Tμκ\\p = suvμκ(s*t) ^ swpμ(s*t) = \\ Tμ\\p ,
s,t s,t

where s, t e Sr+{G), \\ s \\p, \\ t \\q ^ 1. Thus, by property (ii),

|| ^ | | = \\Tμκ\\p^\\Tμ\\p< oo ,

for all KdG. Consequently, μeM+(G), i.e. G is a i^-group.
(iii) => (ii). If (ii) is false let μ be a measure in M+(G) of norm

1 such that || Tμ \\p = r < 1. When vn denotes the w-fold convolution
of μ with itself and Tn the convolution operator on LP(G) defined by
vn we have || vn \\ — 1, || Tn \\p ̂  rn. Now let σ be any function in

with [ σdx = l and set v - ( Σ =i ̂ )*tf. We shall prove that
JG

1 The referee has kindly informed me that Leptin himself has proved Theorem
A in his paper On locally compact groups with invariant means (to appear).
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v is an unbounded measure on G for which || Tv \\p < (1/1 — r) in
contradiction to the hypothesis that G is a if^-group. For arbitrary

where K is the support of s; consequently v is a continuous linear
functional on J%Γ(G). Obviously, r is unbounded, for

N r

Σ \(vn*σ)dx = N > oo
»=1 J

as AΓ-+ oo. On the other hand, for feLp(G),

and so v is a positive unbounded p-admissible measure.

(ii) => (i) If G does not have property (R) there is a measure

y G Λf(G) of positive type for which l dv < 0, (cf. Darsow [2], Dixmier
JG

[5] p. 319). This v is necessarily hermitian ([5] p. 264) while if
Rl(v) = μ+ - μ_, μ+, μ_e M+(G) we have

μ+(s* s) ^ μ_(s* s) , s

But ^+, /̂ _ are also hermitian; hence, by Lemma 1,

\\μ+\\ = 1 1 ^ 1 1 , = | | Γ , + ||2

With this contradiction the proof of Theorem A is complete.
A group G is said to admit an invariant mean if there is a

positive linear functional ^f on I/°(G) of norm 1 such that

^ f ( 1 ) = 1 , ^f/{ψ) = y / W = ^/f(aφ) , aeG

where φa(x) =

LEMMA 2 (Fφlner-Namioka). Both the following conditions are
necessary and sufficient for G to admit an invariant mean:

(i) given any finite set K — {alf , an} in G and ε > 0, there
exists a measurable set A in G such that 0 < m(A) < oo and

n A) > (1 - ε)m(A) , j = 1, 2, , n ,

(ii) ί/^ere is α constant k, 0 < & < 1, swcΛ ίfeαί, ίo βαc/̂  finite
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set K— {aly « ,α%} in G, there corresponds a measurable set A in
G with 0 < m(A) < oo and

1 n

— X m{a3A Π A) > k .

For discrete groups these criteria are due to Folner ([7]); for
locally compact groups in general, (i) is a combination of the results
of Namioka ([15] Th. 3.7) and Dixmier ([6] §4, 3(a)). The proof of
(ii) is a straightforward modification of that given by F0lner (see, for
instance, Hulanicki ([9] Th. 5.3)).

THEOREM B. Let f be a hermitian function in L\(G) nonzero
almost everywhere. Then G has property (R) if and only if

II 2/II , = ί f(x)dx
JG

for some 1 < p < C*D.

REMARK. Theorem B gives a partial extension to all locally
compact groups of the result of Kesten ([11] p. 150) for countable
discrete groups since property (R) is equivalent to the existence of
an invariant mean (see Reiter [17], [18]).

Proof of Theorem B. The necessity of the condition follows at
once from Theorem A. For the proof of sufficiency we may assume
that p = 2. Then, by Lemma 1, for any ε, δ > 0 there exists
s e Jst^(G), \\s\\2 = 1, such that

\ f(x)dx — \ f(x)(s*s)(x)dx < εδ ,
JG JG

because 0 <£ s*s ^ s*s(e) = 1. Hence, for each compact set K in G,

\ f(x) 11 — (s * s)(x) I dx < εδ .
JK

If we assume K is of nonzero measure, on the subset K£ of K on

which 11 — (s* s)(x) I > ε, 1 f(x)dx < δ. Assume for the moment that
JKε

f is continuous and everywhere nonzero; in this case
m(Kε) < δ/inf f(x) .

Consequently, given any compact set K c G, ε, δ > 0 there exists
se J%l(G) with | | s | | 2 = 1 and a subset Kε of K such that
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| 1 - s*s(x)\ <ε, xeK\Kε, m(Kε)< δ .

When g e Js?l(G) has compact support K we have, therefore,

dχk - \g(β*3)\\ £ \ g(χ)\l-(8*S)(χ)\d
JG

i.e., \\g\\, = || Tg\\lm Now let μe M+(G), φe J£ί(G) be given, where
H ^ l l i ^ l and μ has compact support. Then, with s, σ arbitrary-
functions in ^%ί(G) satisfying | | s | | 2 = | | σ | | 2 = 1,

|| Tμ\\2 = sup|μ(s*<j) | ^ sup \μ(φ*s*σ) \
s,σ s,σ

= s u p \ ( μ * ψ ) ( s * σ ) \ = \\T^\\2 = \ \ μ * φ \ \ 1 = \\μ\\

since μ*φeJ%^.(G). Hence || Tμ ||2 — || μ | |. The extension of this
inequality to all of M+(G) is immediate. Consequently G has property
(R). It remains now to show that / may be assumed continuous and

everywhere nonzero. Choose any σ e 3ίΓΛG) with \ σ(x)dx = 1 and
JG

let Kx be the support of σ (we assume Kt contains the identity e of
G). Given any ε > 0 choose se Sέ^(G) and K2 a compact set in G
such that

ί f(x)dx < ε, |1 - (s*S)(x)\ < e,xeKrK2\Kε
JG\K2

where \ f(x)dx < ε for some subset Kε of KrK2. Then

\ (σ*f)(x)(l - (s*s)(x))dx = \ σ{v)<λ /(»)(! ~ (s*s)(yx)dx\dy

^ \ σ(y)\\ f(x)dx + ( f(x)(l - (s*s)(yx))dx\dy
JG KJG\K2 JK2 )

< \
J

G\K2

σ(y)(ε + ε || / ||, + e)dy = ε(2 + || / [U> .

Hence || Tσ*f \\2 = || σ*f W,; but, obviously σ*f is continuous and every-
where nonzero. This completes the proof of Theorem B.

THEOREM C. Let G be a locally compact group. Then G admits
an invariant mean if and only if, for some p, 1 < p < ooj\\Tμ\\p =
\\μ\\ whenever μ is a discrete measure in M+(G).

Proof. If Gd denotes G provided with the discrete topology, t h e
discrete measures in M+(G) can be identified with l\(Gd). To show
t h a t || Tμ\\p = \\μ\\ for some 1 < p < oo and all μel\{Gd) when G
admits an invariant mean, it is enough to prove t h a t || Tμ\\2 = \\μ\\
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for all μ e l+(Gd) having compact support (note that Tμ is an operator
on L2(G)). Let K = {a19 , an} denote the support of any such
measure. Then, given ε > 0, there exists a measurable set A in G,
0 < m(A) < oo, such that

m{a5A Π A) > (1 - ε)m(A) , j = 1, , n .

Setting α/r = χA/m(A)112 with χ 4 the characteristic function of A we
have, therefore,

I II J" II -

< v ,,(n \ 1 w(q3-A n A)
== s 1 Γ\3/ Ά

J—i IIVKXJLJ

Consequently, || Tμ\\2 = \\μ\\ since || ψ ||2 = 1. Suppose conversely t h a t
|| Tμ ||2 = || μ || for all μel\(Gd), (again by convexity arguments it
suffices to consider p — 2). Denote by K any finite set {au « ,α%}
in G and suppose t h a t ad occurs w(j) t imes in K; set C = K U -SΓ"1.
Then the measure μ in ZV(Gd) defined by

is hermitian. Hence, by Lemma 1, given any ε > 0 there exists
s e J^ί(G), || s ||2 = 1 such that

||//1| - μ(s*s) <ε2/2 ,

i.e.,

fw(j)/2n
w(j)/2n

w(j)/n

0

x — aά , αy

X — CL CL

Otherwise
= aj1

-±-Σ {(s*s)(α,) + (s^Xaj1)} < ε2/2
2W 3 = 1

Set σ = s2. Then

= 8 Σ | l - ( s * 8 ) ( α y ) | < 4 n ε 2 ,

since (s*s)(αy) = (s*s)(α71) ^ when s e ^?ί(G). Thus

- Σ Ik - ^ Hi ̂  - < 4 « r V - 2ε .

If, for X ^ 0, Ex = {x e G: σ(x) ^ λ} and χλ is the characteristic function
of Eλ, we can repeat the proof of Hulanicki ([10] p. 98) to obtain
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Since

1 m{Eλ)dX = \ σ(x)dx =
JO JG

there exists Eλ, m(Eλ) Φ 0, such that

1 Λ mjajEχAEχ)

m(Eλ)

Consequently,

— Σ m f α ^ Π #;)

i.e., G admits an invariant mean (Lemma 2).

DEFINITION. For given C, 0 < C < 1, a locally compact group G
is said to have property R(C), resp. Rd(C), if, given any compact
set KaG, resp. finite set K = {al9 , an) c G, there exists s e J%Γ(G)
with | | s | | 2 = 1 such that

sup 11 — (s*s)(x) I < C ,

respectively

sup 11 - (s*s)(ad) I < C .

Thus, if G has property i?(C) for all 0 < C < 1 it has property
(12), (cf. Dixmier [5] p. 319).

THEOREM D. Let G be a locally compact group. Then the follow-
ing assertions are equivalent:

( i) G has property (R),
(ii) G has property R(C) for some 0 < C < 1,
(iii) G has property Rd(C) for some 0 < C < 1.

Proof. Obviously (i) => (ii) =* (iii). To show that (iii) => (i) it is
enough to prove that, when G has property Rd(C) for some 0 < C < 1,
then || Tμ\\2 = \\μ\\ for every μel\(Gd). Since then, by Theorem C,
G admits an invariant mean; consequently it will also have property
(R) (cf. Reiter [17], [18]). Let μ be an element of l\(Ga) having
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compact support say K = {aly , α j . By Rd(C) there exists s e J>t~(G),
II s ||2 = 1, such that

μ \ \ - \μ(s*s)

Thus || Tμ ||2 ^ (1 - C) || μ || for any μ e l+(Gd) having compact support.
But, if || Tμ ||2 = r || μ ||, r < 1, for sufficiently large w

( 1 - C ) | | vn\\ = (1-C)\\μ\\*

^ || Tn ||2 ^ (II T , | | 2 Γ = r*\\μ \\« < ( 1 - C ) \ \ μ \\n

where vn denotes the ^-fold convolution product of μ with itself and
Tn = TVn. This is an obvious contradiction. Thus || Tμ\\2 = \\μ\\ for
all μ e ϊ+(Gd) and so G has property (R).

3* By way of illustration we shall consider two groups:
(i) free group (?«, with generators an, n — 1, 2, , each of order

2,
(ii) G = SL(R, 2).
3(i). Let Gn be the free group generated by a,j,j = l, ,n.

Darsow ([2]) has shown that, for any se J%ί(Gn)9 \\s\\2 = 1,

( 3 ) sup 11 - (s* 8)(as)! > [1 - (2/n)(n - I)1'2] .

Consequently, G^ fails to have property R(C) for any 0 < C < 1 (note
that the restriction to Gn of an s e J%$(Gco), \\s\\z = 1, cannot decrease
(3)). Repeating the proof of Darsow ([2] p. 452) we can show that
for any such s

for some ^-tuple (t19 , tn), 0 ^ ί̂ Γ ^ 1, tx + ί2 + + tn ^ 1. An
elementary argument using Lagrange's Multipliers shows that

Σ (s* β)(«y) ^
( 4 )

= (n - 1)1/2

whenever SG ̂ ί(Goo), || s 112 = 1. Now the characteristic function of
the subset (a19 •• ,αn) of Gco is a hermitian measure μΛ in M+(Goo) of
norm w. But, by (4), as an operator on L2(Gn),

\\ TμJ\2 ̂  (n - iy'2 .

All the above calculations again hold when Gn is regarded as a sub-
group of Goo. Consider the measure
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Then μ$M+(GJ, but || Tμ\\% ^ Σ~=i (l/n*)(n - 1)1/2 < oo, i.e., // is a
positive, unbounded, 2-admissible measure.

3(ii). The group SL(R, 2) contains a discrete subgroup H isomor-
phic to the free group Ga>h on two generators α, b (see, for example,
[1]). Furthermore, G — SL(R, 2) possesses a fundamental domain F
measurable with respect to Haar measure on G (cf. [16], [19]) such
that

[
J

s(x)dx = Σ ( s(ζx)dx , s e
G ξeH JF

Following Reiter ([16] p. 2883) we set

sH(ζ) = \ s(ξx)dx , ς e H ,
JF

whenever s e Sf(G). Now, for fixed y e H, when s e ^ ί ( G ) , || s ||2 = 1
and σ = s2, we have

= Σ
f6

^ \ \σ(x) — σ(y-ιx)\ dx ̂  | | s + s, ||2 | | s -
JGJG

clearly ΣeeH 0jj(f) = l Denote by M the subset of i ϊ which can be
identified with {a, α2, , an, 6, 62, -, 6W} in GaΛ. Then, if iV denotes
all words in Ga>b starting with b and P = Ga,b\N

1 ^ Σ Σ Mαmf) > ( π + 1) Σ <Mf) - ^

1 ^ Σ Σ σH(6mf) >(w + 1) Σ <Ίϊ(f) - nε
0 ζQP ζeP

Σ
m=0

where ε = sup96jf Σeeπ I 0*(£) - ^H(V^) l» ( s e e Yoshizawa [12] p. 57).
Hence ε > (w — l)/2n. But then

s u p | l - ( s * ~ / w / , =
V O

This inequality persists for arbitrary s G JΓ(G) with | | s | | 2 = l (cf.
Darsow [2] p. 453), consequently SL(R, 2) does not have Rd(C) for
any 0 < C < 1/32.

If μ denotes the characteristic function of the set M U M"1 in
H (so that μ is a discrete measure in M+(SL(R, 2)) then
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2 ^ ( 2 - ( s * s ) (am) — (s*s) (om))
m=l J

t h e infinium being taken over all se ^%^(G) with | | s | | 2 = 1. Hence

eeir
σB(ξ) - σ^η-'ξ

' ) •

With only a simple modification of the argument of Yoshizawa we
see that

Σ Σ I σs(ξ) - °AV-^) \>(n-

Thus

i.e., \\μ\\ = 4n, but,

Hence | | Γ ^ | | a < \\ μ\\.
For more definitive results in the contex of free groups one should

consult Dieudonne ([4]), Kesten ([12]).
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