
Pacific Journal of
Mathematics

A STABILITY THEOREM FOR A THIRD ORDER NONLINEAR
DIFFERENTIAL EQUATION

J. L. NELSON

Vol. 24, No. 2 June 1968



PACIFIC JOURNAL OF MATHEMATICS
Vol. 24, No. 2, 1968

A STABILITY THEOREM FOR A THIRD ORDER
NONLINEAR DIFFERENTIAL EQUATION

J. L. NELSON

A stability theorem and a corollary are proved for a
nonlinear nonautonomous third order differential equation. A
remark shows that the results do not hold for the linear case.

THEOREM. Let pf(t) and q(t) be continuous and q(t) ^ 0,

p(t) < 0 with p'(t) ^ 0. For any A and B suppose

A + Bt— fl q(s)ds < 0

S t
q(s)ds, then any nonoscillatory solu-

tion x(t) of the equation

x' = p(t)x -f q(t)x2n+ί = 0, n = 1, 2, 3, ,

has the following properties;

sgn x — sgn x, Φ sgn x, lim x(t)

= lim x(t) = 0, lim | x(t) \ = L έ 0 ,

and a (ί) x(t), x(t) are monotone functions.
COROLLARY. If qit) > e > 0 for large £, then limί-»oo x(t) = 0.

In this paper, a nonoscillatory solution x(t) of a differential
equation is one that is continuable for large t and for which there
exists a t0 such that if t > t0 then x(t) Φ 0. Under above conditions
on p(t) and q(t) there always exist continuable nonoscillatory solutions
of the equation

(1) x + p(t)x + q(t)x2n+1 = 0 .

This follows from an exercise in [1] by letting

x(t) = Vl(t), x(t) = -y2(t), x(t) = y,(t) ,

so that

Vi = -Vi

Vi = -2/3

Equation (1) can then be written as the system y' = —f(t,y) where
f(t, o) = o, f(t, y) continuous for t ^ 0, yu y2, y3, ^ 0 and fk(t, y) ^ 0,
k = 1, 2, 3, for τ/fc > 0. In fact || ^(0) || may be prescribed.
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THEOREM I.1 If p and q satisfy the following conditions for
large t,

( i ) q(t) ^ and q continuous,
(ii) p(t) < 0 with p'(t) ^ 0 and continuous,

S t
Q(s)ds < 0 for large t where

S ί 0

q(s)ds,
then for any nonoscillatory solution x(t) of (1) the following pro-
perties hold for large t:

1 if x 0
(a) sgn x = sgn x Φ sgn i, where sgn & = , . .

I i i f x 0 1 *

(b) lim x(t) = lim x(t) = 0, \im/x(t)/ = L ^ 0.
(c) &(£), x(t), x(t) are monotone functions.

Proof. Suppose x(t) is a solution that does not oscillate. Let a
be a large positive number such that x(t) Φ 0 for t ^ a.

Since — β(£) is also a solution of (1), without loss of generality,
assume that x(t) > 0 for t ^ a. (1) may be written in the form

( 2 ) *<*> + ^ ί M 0 _ = _ 9 ( ί ) for ί < o .

An integration from α to t, an integration by parts, and another
integration from α to ί yield

x2n+ι(t)

X2n+3(S)

<* - s ^ ds
2 ( )JL> \€>) Δϊb

= M + Kt - \tQ(s)ds .

Assertion 1. For any ta > α, x(t) cannot be nonnegative for all
t > ta. Suppose that x(t) ^ 0 for all t > ta. Let tp be so large that
the conditions of the theorem hold for all t ^ tp and tp ^ ta. For
ί ^ ίp the following holds

(2n + l)(w + 1

2n )tp χ2n(s)

1 This theorem appears in the author's Ph. D. dissertation written at the
University of Missouri under the direction of W. R. Utz.
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where all constants are combined and named M. For sufficiently large
— — f*

t the right side, M + Kt — \ Q(s)ds, is negative and the left side
Jo

positive, this is clearly impossible.
There are two possibilities for x(t).
Case 1. x(t) < 0 for t > t, for some t.
Case 2. For each t e (α, oo) there is a t > t such that x{t) ^ 0.

Assertion 2. Case 2 is impossible.
Let tλ be a large £ such that x(tj) ^ 0. There exists a number

£2 > £x such that #(£2) < 0. Let r be the greatest zero of x(t) less
than t2. There exists a number £3 > £2 such that x(t3) ^ 0. Let s be
the smallest zero of x(t) greater than t2. Multiply the original differ-
ential Equation (1) by x(t) to obtain

x(t)x(t) + p(t)[x(t)]2 + q(t)x2n+1(t) = 0 ,

integrating from r to s and using integration by parts on the first
integral gives

- [\x(t)]2dt + [p(t)[x(t)]2dt + [Sq(t)x2n+I(t)x(t)dt = 0 .

The left side is negative, this is clearly impossible and Assertion 2 is
proved. Therefore, there exists a t such that x(t) < 0 for t > t.

Consider Equation (1) written in the form

'x(t) = —p(t)x(t) — q(t)x2n+1(t) ,

the right side is negative for large t. Therefore, x(t) < 0 for £ > t.
This implies that x(t) is a decreasing function and x(t) is concave
downward for t > t. Since x(t) is eventually of one sign, there are
three possibilities for x(t).

Case 1. lim^co x(t) = — co
Case 2. lim^^ x(t) — c < 0
Case 3. lim^^ x(t) = 0.

Case 1 is impossible since it implies that x(t) is negative for large t.
Case 2 also implies that x(t) is negative for large t. Therefore, the
only remaining possibility is

lim x(t) = 0 .

Since x(t) is decreasing and must remain positive for large £, x(t) is
eventually monotone increasing. Since x(t) is monotone decreasing
and positive, l i m ^ (x)t exists. Suppose that l im^x (t) = c > 0. Then
x(t) eventually has slope larger than c/2, this is impossible since
x{t) < 0 for large t. Therefore, lim^oo x(t) = 0. Thus x(t) is positive,
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decreasing and concave upward for large t.

COROLLARY. // q(t) > ε > 0 for large t, then l i m ^ x(t) = 0.

Proof. Suppose l i m ^ x(t) = L, L Φ 0. Since —x(t) is a solution
whenever x(t) is a solution, it can be assumed without loss of gener-
ality that L > 0. Consider Equation (1) in the form

x(t) = - p(t)x(t) - q(t)xznl(t) .

Since l i m ^ x(t) = 0 and l i m ^ p(t) — p, where p <; 0, given any a
such that

0 < — < L2n+1 , for large t
Λ

L2n+i _ ^ 2 < x2n+1(t) < L2 n + 1 + a/2 and ί>(ί)i(ί) > 0. Therefore,
x(t) = - ί>(ί)*(ί) - q(t)x2n+1(t) < - e(L2n+1 - a/2) < 0 and x(t) must then
tend to — co as t tends to + oo, this is impossible. This L = 0.

REMARK. The following example illustrates the theorem.

x - — x + — x3 = 0 .
2 2

# = e~ι is a solution with the required properties .

REMARK. The theorem does not hold for n = 0, i.e., in the
linear case.

Proof Consider 'x — 2x + x — 0, x = et is a solution.
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